Self Studies

Limits and Derivatives Test - 26

Result Self Studies

Limits and Derivatives Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$ \lim _{ x\rightarrow 1 }{ \dfrac { \sqrt { 1-\cos { 2\left( x-1 \right)  }  }  }{ x-1 }  }$$
    Solution

  • Question 2
    1 / -0
    If $$f(x) = 2x^9 - 5x^8 + 7x^6 - 15x^4 + 5x + 7$$, then $$\underset{x \rightarrow 0}{\lim} \dfrac{f (1 - \alpha) - f(1)}{\alpha^3 + 3 \alpha}$$ is 
  • Question 3
    1 / -0
    If $$f(x) = 3x^{10} - 7x^8 + 5x^6 - 21x^3 + 3x^2 - 7$$, then $$\underset{a \rightarrow 0}{\lim} \dfrac{f(1 - \alpha) - f(1)}{\alpha^3 + 3 \alpha}$$ is 
    Solution
    $$\lim_{\alpha \rightarrow 0}\dfrac{f(1-\alpha )-f(1)}{\alpha ^3+3\alpha }$$

    Apply L-Hospital's rule

    $$=\lim_{\alpha \rightarrow 0}\dfrac{f'(1-\alpha )-0}{3\alpha ^2+3 }$$

    $$=\dfrac{f'(1 )}{3 }$$

    Considering, f(x)

    $$f(x )=3x^{10}-7x^8+5x^6-21x^3+3x^2-7$$

    $$f'(x )=30x^{9}-56x^7+30x^5-63x^2+6x$$

    Calculating required limit value:
    $$=\dfrac{f'(1 )}{3 }$$

    $$=\dfrac{30(1)^{9}-56(1)^7+30(1)^5-63(1)^2+6(1)}{3 }$$

    $$=\dfrac{-53}{3}$$
  • Question 4
    1 / -0
    $$\displaystyle \lim_{n \rightarrow \infty}\dfrac {1^{2}+2^{2}+3^{2}+....+n^{2}}{n^{3}}$$ is equal to
    Solution
    Solution
    $$ \displaystyle \lim_{x\rightarrow \infty } \dfrac{1^2 + 2^2 +--- n^2}{n^3}$$
    we know that $$ 1^2 + 2^2 + --- n^2 = \dfrac{n (n+1)(2n+1)}{6}$$
    $$ \displaystyle =\lim_{x\rightarrow \infty }\frac{n(n+1)(2n+1)}{6n^3}$$
    $$ \displaystyle= \lim_{x\rightarrow \infty }\frac{(n+1)(2n+1)}{6n^2} = \lim_{x\rightarrow \infty } \frac{2n^2 +3n +1}{6n^2}$$
    Apply L-Hospital rule twice.
    $$ \displaystyle = \lim_{x\rightarrow \infty } \dfrac{4n+3}{12n}$$
    $$ = \dfrac{4}{12} = \dfrac{1}{3}$$
    C is correct.

  • Question 5
    1 / -0
    If $$y=|\cos x|+|\sin x|$$, then $$\dfrac{dy}{dx}$$ at $$x=\dfrac{2\pi}{3}$$ is 
    Solution

    We have,

    $$y=\left| \cos x \right|+\left| \sin x \right|$$

     

    We know that the $$\cos x$$ is $$-ve$$ in $$\left( \dfrac{\pi }{2},\pi  \right)$$ and $$\sin x$$ is $$+ve$$ in this domain.

     

    Therefore,

    $$y=-\cos x+\sin x$$

     

    On differentiating both sides w.r.t $$x$$, we get

    $$ \dfrac{dy}{dx}=-\left( -\sin x \right)+\cos x $$

    $$ \dfrac{dy}{dx}=\sin x+\cos x $$

     

    Since, $$x=\dfrac{2\pi }{3}$$

     

    Therefore,

    $$ {{\left. \dfrac{dy}{dx} \right|}_{x=\dfrac{2\pi }{3}}}=\sin \left( \dfrac{2\pi }{3} \right)+\cos \left( \dfrac{2\pi }{3} \right) $$

    $$ {{\left. \dfrac{dy}{dx} \right|}_{x=\dfrac{2\pi }{3}}}=\dfrac{\sqrt{3}}{2}-\dfrac{1}{2} $$

    $$ {{\left. \dfrac{dy}{dx} \right|}_{x=\dfrac{2\pi }{3}}}=\dfrac{\sqrt{3}-1}{2} $$

     

    Hence, this is the answer.

  • Question 6
    1 / -0
    The value of $$\lim_{x\rightarrow o}\dfrac{\sqrt{\dfrac{1}{2}(1-cos 2 x)}}{x}$$
    Solution
    $$\lim_{x \rightarrow 0}{\cfrac{\sqrt{\frac{1}{2} \left( 1 - \cos{2x} \right)}}{x}}$$
    $$= \lim_{x \rightarrow 0}{\cfrac{\sqrt{\frac{1}{2} \left( 1 - \left( 1 - 2 \sin^{2}{x} \right) \right)}}{x}}$$
    $$= \lim_{x \rightarrow 0}{\cfrac{\sqrt{\frac{1}{2} \left( 1 - 1 + 2 \sin^{2}{x} \right)}}{x}}$$
    $$= \lim_{x \rightarrow 0}{\cfrac{\sqrt{\frac{1}{2} \left( 2 \sin^{2}{x} \right)}}{x}}$$
    $$= \lim_{x \rightarrow 0}{\cfrac{\sqrt{\sin^{2}{x}}}{x}}$$
    $$= \lim_{x \rightarrow 0}{\cfrac{\sin{x}}{x}}$$
    $$= 1 \; \left( \because \lim_{x \rightarrow 0}{\cfrac{\sin{x}}{x}} = 1 \right)$$

  • Question 7
    1 / -0
    If $$y=|\cos x|+|\sin x|$$, then $$\dfrac {dy}{dx}$$ at $$x=\dfrac {2\pi}{3}$$  is
    Solution
    $$ y = |cos\,x|+|sin\,x| $$ $$ , x = \dfrac{2n}{3} $$
    $$ y = -cos\,x+sin\,x $$    $$ \left \{ x\sum (\dfrac{\pi }{2},\pi ) \right \} $$
    $$ y^{1} = sinx+cosx $$
    $$ y^{1} = sin(\dfrac{2n}{3})+cos(\dfrac{2n}{3}) $$
    $$ = \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} = \dfrac{\sqrt{3}-1}{2} $$ Option C is correct 

  • Question 8
    1 / -0
    The value of $$\underset { x\longrightarrow \infty  }{ Lim } \dfrac{d}{dx}\overset { \sqrt { 3 }  }{ \underset { -\sqrt { 3 }  }{ \int }  } \dfrac{r^3}{(r+1)(r-1)}$$dr,is
    Solution
    Given,

    $$\lim_{x\rightarrow \infty }\dfrac{d}{dx}\int_{-\sqrt{3}}^{\sqrt{3}}\dfrac{r^3}{(r+1)(r-1)}dr$$

    using long division process, we get,

    $$=\lim_{x\rightarrow \infty }\dfrac{d}{dx}\int_{-\sqrt{3}}^{\sqrt{3}}\dfrac{r^3}{r^2-1}dr$$

    $$=\lim_{x\rightarrow \infty }\dfrac{d}{dx}\int_{-\sqrt{3}}^{\sqrt{3}}r+\dfrac{r}{r^2-1}dr$$

    $$=\lim_{x\rightarrow \infty }\dfrac{d}{dx}\left [ \dfrac{r^2}{2}+\dfrac{1}{2}\ln \left|r^2-1\right| \right ]_{-\sqrt{3}}^{\sqrt{3}}$$

    $$=\lim_{x\rightarrow \infty }\dfrac{d}{dx} (0)$$

    $$=0$$
  • Question 9
    1 / -0
    $$\mathop {\lim }\limits_{x \to 0} \,\dfrac{1}{x}\,{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$$ is equal to
    Solution
    Solution -
    $$ \displaystyle \lim_{x\rightarrow 0} \frac{1}{x}sin^{-1}(\frac{2x}{1+x^{2}})$$
    we know that
    $$ \displaystyle sin^{-1}x+sin^{-1}y = sin^{-1}(x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}})$$
    $$ \displaystyle sin^{-1}(\frac{2x}{1+x^{2}})= sin^{-1}(\frac{1}{\sqrt{1+x^{2}}})+sin^{-1}(\frac{1}{\sqrt{1+x^{2}}})$$
    $$ \displaystyle = 2sin^{-1}(\frac{1}{\sqrt{1+x^{2}}})-\pi $$
    $$\displaystyle \lim_{x\rightarrow 0} \frac{2sin^{-1}(\frac{1}{\sqrt{1+x^{2}}})-\pi }{x}$$
    from triangle.
    $$ \displaystyle \lim_{x\rightarrow 0} \frac{2tan^{-1}(\frac{1}{x})-\pi }{x}$$
    Apply L Hospital rule-
    $$ \displaystyle \lim_{x\rightarrow 0} 2(\frac{1}{1+(\frac{1}{x})^{2}})$$
    $$ \displaystyle \lim_{x\rightarrow 0} \frac{2x^{2}}{1+x^{2}}$$
    $$ = 0.$$
    B is correct.

  • Question 10
    1 / -0
    $$\mathop {\lim }\limits_{x \to 0} \dfrac{1}{x}{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$$ is equal to
    Solution
    $$\mathop {\lim }\limits_{x \to 0} \dfrac{1}{x}{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$$

    can be written as 
    $$\mathop {\lim }\limits_{x \to 0} \dfrac{\sin^{-1}(\dfrac{2x}{1+x^2})}{x}$$

    it is of the form $$\dfrac00$$

    So, we will apply L Hospital rule until we will get determinate form

    Differentiating numerator and denominator we will get,
    $$=\lim_{x\to 0}\dfrac{\dfrac{1}{\sqrt{1-(\dfrac{2x}{1+x^2})^2}}.\dfrac{2(1+x^2)-4x^2}{(1+x^2)^2}}{1}=\lim_{x\to0}\dfrac{1}{\sqrt{1-(\dfrac{2x}{1+x^2})^2}}.\dfrac{2(1+x^2)-4x^2}{(1+x^2)^2}=2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now