Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    $$\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{2{x^2} + x - 3}} = $$

  • Question 2
    1 / -0

    If $$a{x^2} + 2hxy + b{y^2} = 0$$ then $$\frac{{dy}}{{dx}}$$ is equal to

  • Question 3
    1 / -0

    $$\underset{x \rightarrow \frac{\pi}{2}}{\lim} \dfrac{\cot x - \cos x}{\left(\dfrac{\pi}{2} -x \right)^3} = $$

  • Question 4
    1 / -0

    Solve:
    $$\displaystyle \int_{0}^{1}\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}dx=$$

  • Question 5
    1 / -0

    Solve

    $$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 5x}}{{\tan 3x}}$$

  • Question 6
    1 / -0

    If   $${z_r} = \cos \dfrac{{r\alpha }}{{{n^2}}} + i\sin \dfrac{{r\alpha }}{{{n^2}}}$$, where $$ r= 1, 2, 3, ....n$$, then $$\mathop {\lim }\limits_{n \to \infty } \left( {{z_1}.{z_2}.....{z_n}} \right)$$ is equal to 

  • Question 7
    1 / -0

    If $$y=a\ \sin\ x+b\ \cos\ x$$, then $$y^{2}+\left ( \dfrac{dy}{dx} \right )^{2}$$ is

  • Question 8
    1 / -0

    If $$f(x) = x\sin x$$ ,find $$f'(\pi )$$, using first principle.

  • Question 9
    1 / -0

    If $$f(x+y)=2f(x).f(y)$$ for all $$x,y$$, where $$f'(0)=3$$ and $$f'(4)=2$$ then $$f'(4)=3$$ is equal to

  • Question 10
    1 / -0

    If $$y=(x+\sqrt{x^{2}+a^{2}})^{n}$$ then $$\dfrac{dy}{dx}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now