Self Studies

Limits and Derivatives Test - 27

Result Self Studies

Limits and Derivatives Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{2{x^2} + x - 3}} = $$
    Solution
    Now,
    $$\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{2{x^2} + x - 3}}  $$

    $$=\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{(2{x^2} +3 x-2x - 3)}}  $$

    $$=\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{(x-1)(2x + 3)}}  $$

    $$=\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{(\sqrt x-\sqrt 1)(\sqrt x+\sqrt 1)(2x + 3)}}  $$

    $$=\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)}}{{(\sqrt x+\sqrt 1)(2x + 3)}}  $$

    $$=\dfrac{-1}{2\times5}$$

    $$=-\dfrac{1}{10}$$.
  • Question 2
    1 / -0
    If $$a{x^2} + 2hxy + b{y^2} = 0$$ then $$\frac{{dy}}{{dx}}$$ is equal to
    Solution

  • Question 3
    1 / -0
    $$\underset{x \rightarrow \frac{\pi}{2}}{\lim} \dfrac{\cot x - \cos x}{\left(\dfrac{\pi}{2} -x \right)^3} = $$
    Solution

  • Question 4
    1 / -0
    Solve:
    $$\displaystyle \int_{0}^{1}\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}dx=$$
    Solution
    $$\displaystyle\int_{0}^{1}{\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}}$$

    $$=\displaystyle\int_{0}^{1}{\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}\times\dfrac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}}$$

    $$=\displaystyle\int_{0}^{1}{\dfrac{\left(\sqrt{x+1}+\sqrt{x}\right)dx}{x+1-x}}$$

    $$=\displaystyle\int_{0}^{1}{\left(\sqrt{x+1}+\sqrt{x}\right)dx}$$

    $$=\left[\dfrac{{\left(x+1\right)}^{\frac{1}{2}+1}}{\dfrac{1}{2}+1}+\dfrac{{\left(x\right)}^{\frac{1}{2}+1}}{\dfrac{1}{2}+1}\right]_{0}^{1}$$

    $$=\left[2\dfrac{{\left(x+1\right)}^{\frac{3}{2}}}{3}+2\dfrac{{\left(x\right)}^{\frac{3}{2}}}{3}\right]_{0}^{1}$$

    $$=2\left[\dfrac{{\left(x+1\right)}^{\frac{3}{2}}}{3}+\dfrac{{\left(x\right)}^{\frac{3}{2}}}{3}\right]_{0}^{1}$$

    $$=\dfrac{2}{3}\left[\left({2}^{\frac{3}{2}}-1\right)-\left(1-0\right)\right]$$

    $$=\dfrac{2}{3}\left[2\sqrt{2}-2\right]$$

    $$=\dfrac{4}{3}\left(\sqrt{2}-1\right)$$
  • Question 5
    1 / -0
    Solve

    $$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 5x}}{{\tan 3x}}$$
    Solution
    Let$$L=\displaystyle \lim_{x\rightarrow 0}\dfrac {\sin 5x}{\tan 3x}$$

    $$= \displaystyle \lim_{x\rightarrow 0}\dfrac {\sin 5x}{5x}\times \dfrac {3x}{\tan x}\times \dfrac {5}{3}$$

    we know that $$\displaystyle \lim_{x\rightarrow 0}\dfrac {\sin 5x}{5x}=1$$ and $$\displaystyle \lim_{x\rightarrow 0}\dfrac {3x}{\tan 3x}=1$$


    $$L=1\times 1\times \dfrac {5}{3}$$

    $$\displaystyle \lim_{x\rightarrow 0}\dfrac {\sin 5x}{\tan 3x}= \dfrac {5}{3}$$


  • Question 6
    1 / -0
    If   $${z_r} = \cos \dfrac{{r\alpha }}{{{n^2}}} + i\sin \dfrac{{r\alpha }}{{{n^2}}}$$, where $$ r= 1, 2, 3, ....n$$, then $$\mathop {\lim }\limits_{n \to \infty } \left( {{z_1}.{z_2}.....{z_n}} \right)$$ is equal to 
    Solution
    Solution - 
    $$ z_{r} = \dfrac{cosr\alpha }{n^{2}}+i\dfrac{sinr\alpha }{n^{2}} $$

    Comparing with $$ cos \theta +isin \theta$$

    $$\theta =\dfrac {r\alpha}{n^2}$$

    $$\therefore z_r= e^{\dfrac{ir\alpha }{n^{2}}}$$

    $$ \lim_{n\rightarrow \infty } (z_{1},z_{2},z_{3}....z_n) = e^{\dfrac{i\alpha }{n^{2}}}e^{\dfrac{2i\alpha }{n^{2}}} e^{\dfrac{3i\alpha }{n^{2}}}...e^{\dfrac{ni\alpha }{n^{2}}}$$

    $$ = \lim_{n\rightarrow \infty } e^{i\alpha (\dfrac{1}{n^{2}}+\dfrac{2}{n^{2}}+...)}$$

    $$ = \lim_{n\rightarrow \infty } e^{i\alpha \dfrac{1}{n^2}(1+2+3)}$$

    $$ = \lim_{n\rightarrow \infty } e^{i\alpha (\dfrac{n^{2}+n}{2n^{^{2}}})} \quad \dots S_{n}=\dfrac{n}{2}\left [ 2a+(n-1)d \right ]$$

    at $$ n\rightarrow \infty $$

    $$ = e^{i\alpha }\times \dfrac{1}{2}$$

    $$\lim_{n\rightarrow \infty } (z_{1},z_{2},z_{3}....z_n) = \sqrt{e^{i\alpha }}$$



  • Question 7
    1 / -0
    If $$y=a\ \sin\ x+b\ \cos\ x$$, then $$y^{2}+\left ( \dfrac{dy}{dx} \right )^{2}$$ is
    Solution
    $$y=a\sin{x}+b\cos{x}$$

    $$\dfrac{dy}{dx}=a\cos{x}-b\sin{x}$$

    $${y}^{2}+{\left(\dfrac{dy}{dx}\right)}^{2}={\left(a\sin{x}+b\cos{x}\right)}^{2}+{\left(a\cos{x}-b\sin{x}\right)}^{2}$$

    $$={a}^{2}{\sin}^{2}{x}+{b}^{2}{\cos}^{2}x+2ab\sin{x}\cos{x}+{a}^{2}{\cos}^{2}{x}+{b}^{2}{\sin}^{2}x-2ab\sin{x}\cos{x}$$

    $$={a}^{2}\left({\sin}^{2}{x}+{\cos}^{2}{x}\right)+{b}^{2}\left({\sin}^{2}{x}+{\cos}^{2}{x}\right)$$

    $$={a}^{2}+{b}^{2}$$ since $${\sin}^{2}{x}+{\cos}^{2}{x}=1$$

    $$=constant$$

  • Question 8
    1 / -0
    If $$f(x) = x\sin x$$ ,find $$f'(\pi )$$, using first principle.
    Solution

  • Question 9
    1 / -0
    If $$f(x+y)=2f(x).f(y)$$ for all $$x,y$$, where $$f'(0)=3$$ and $$f'(4)=2$$ then $$f'(4)=3$$ is equal to
    Solution

  • Question 10
    1 / -0
    If $$y=(x+\sqrt{x^{2}+a^{2}})^{n}$$ then $$\dfrac{dy}{dx}=$$
    Solution
    $$y={ \left( x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } }  \right)  }^{ n }\quad $$
    $$\cfrac { dy }{ dx } =n{ \left( x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } }  \right)  }^{ n-1 }.\cfrac { d }{ dx } \left( x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } }  \right) $$
    $$=n{ \left( x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } }  \right)  }^{ n-1 }.\left( 1+\cfrac { x }{ \sqrt { { x }^{ 2 }+{ a }^{ 2 } }  }  \right) =n{ \left( x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } }  \right)  }^{ n-1 }\left( \cfrac { \sqrt { { x }^{ 2 }+{ a }^{ 2 } } +x }{ \sqrt { { x }^{ 2 }+{ a }^{ 2 } }  }  \right) $$
    $$=\cfrac { n{ \left( x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } }  \right)  }^{ n } }{ \sqrt { { x }^{ 2 }+{ a }^{ 2 } }  } =\cfrac { n.y }{ \sqrt { { x }^{ 2 }+{ a }^{ 2 } }  } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now