Self Studies

Limits and Derivatives Test - 28

Result Self Studies

Limits and Derivatives Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)$$ is the integral of $$\dfrac{2\sin{x}-\sin{2x}}{x^{3}},\ x\neq 0$$. Find $$\lim _{ x\rightarrow 0 }{ f^{ ' }\left( x \right)  } $$, where $$f^{ ' }\left( x \right) =\dfrac{df{(x)}}{dx}$$
    Solution
    $$f(x)=\dfrac{2\sin x-\sin 2x}{x^3}$$    $$x\neq 0$$

    $$f'(x)=\dfrac{df(x)}{dx}=\dfrac{2\sin x-\sin 2x}{x^3}$$

    $$=\dfrac{2\sin  x}{x}\left(\dfrac{1-\cos x}{x^2}\right)$$

    $$\Rightarrow \displaystyle \lim_{x\rightarrow 0}{f'(x)}=\displaystyle \lim_{x\rightarrow 0}{2\left(\dfrac{\sin x}{x}\right)}\left( \dfrac{2\sin^2(x/2)}{x^2}\right)$$

    $$\Rightarrow \displaystyle 4\cdot 1 \lim_{x\rightarrow 0}{\left(\dfrac{\sin^2(x/2)}{4\times (x/2)^2}\right)}$$

    $$=1 $$
  • Question 2
    1 / -0
    $$\underset{x\rightarrow 0}{lim} \dfrac{\sqrt{a^2 -ax+x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} -\sqrt{a-x}}$$ is equal to (a > 0)
    Solution
    $$\Rightarrow L=\displaystyle\lim_{x\rightarrow 0}\dfrac{(\sqrt{a^2-ax+x^2}-\sqrt{a^2+ax+x^2})(\sqrt{a+x}+\sqrt{a-x})}{(a+x)-(a-x)}$$
    $$\Rightarrow L=\displaystyle\lim_{x\rightarrow 0}\dfrac{2\sqrt{a}}{2x}(\sqrt{a^2-ax+x^2}-\sqrt{a^2+ax+x^2})$$
    $$\Rightarrow L=\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{a}}{x}\left(\dfrac{(a^2-ax+x^2)-(a^2+ax+x^2)}{\sqrt{a^2-ax+x^2}+\sqrt{a^2+ax+x^2}}\right)$$
    $$\Rightarrow L=\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{a}}{x}\times \dfrac{(-2ax)}{2\sqrt{a}}=-\sqrt{a}$$
    $$\Rightarrow (B)$$.

  • Question 3
    1 / -0
    If $$\dfrac{dx}{tan(x+y)} = \dfrac{dy}{cot(x+y)} = \dfrac{dz}{I}$$ then z in term of x & y can be expressed as
  • Question 4
    1 / -0
    The value of $$\displaystyle lim_{x\to 0} \dfrac{cos (sin x) - cos x}{x^4} $$ is equal to
    Solution
    Given,

    $$\lim _{x\to \:0}\left(\dfrac{\cos \left(\sin \left(x\right)\right)-\cos \left(x\right)}{x^4}\right)$$

    apply L-Hospital's rule

    $$=\lim _{x\to \:0}\left(\dfrac{-\sin \left(\sin \left(x\right)\right)\cos \left(x\right)+\sin \left(x\right)}{4x^3}\right)$$

    again apply L-Hospital's rule

    $$=\lim _{x\to \:0}\left(\dfrac{-\cos ^2\left(x\right)\cos \left(\sin \left(x\right)\right)+\sin \left(x\right)\sin \left(\sin \left(x\right)\right)+\cos \left(x\right)}{12x^2}\right)$$

    once again apply L-Hospital's rule

    $$=\lim _{x\to \:0}\left(\dfrac{\frac{3\sin \left(2x\right)\cos \left(\sin \left(x\right)\right)+2\cos ^3\left(x\right)\sin \left(\sin \left(x\right)\right)+2\cos \left(x\right)\sin \left(\sin \left(x\right)\right)-2\sin \left(x\right)}{2}}{24x}\right)$$

    upon simplification, we get,

    $$=\lim _{x\to \:0}\left(\dfrac{3\sin \left(2x\right)\cos \left(\sin \left(x\right)\right)+2\cos ^3\left(x\right)\sin \left(\sin \left(x\right)\right)+2\cos \left(x\right)\sin \left(\sin \left(x\right)\right)-2\sin \left(x\right)}{48x}\right)$$

    again applying L-Hospital's rule,

    $$=\lim _{x\to \:0}\left(\dfrac{3\left(2\cos \left(2x\right)\cos \left(\sin \left(x\right)\right)-\sin \left(\sin \left(x\right)\right)\cos \left(x\right)\sin \left(2x\right)\right)+2\left(-3\cos ^2\left(x\right)\sin \left(x\right)\sin \left(\sin \left(x\right)\right)+\cos ^4\left(x\right)\cos \left(\sin \left(x\right)\right)\right)+2\left(-\sin \left(x\right)\sin \left(\sin \left(x\right)\right)+\cos ^2\left(x\right)\cos \left(\sin \left(x\right)\right)\right)-2\cos \left(x\right)}{48}\right)$$

    substituting $$x=0$$

    $$\dfrac{3\left(2\cos \left(2\cdot \:0\right)\cos \left(\sin \left(0\right)\right)-\sin \left(\sin \left(0\right)\right)\cos \left(0\right)\sin \left(2\cdot \:0\right)\right)+2\left(-3\cos ^2\left(0\right)\sin \left(0\right)\sin \left(\sin \left(0\right)\right)+\cos ^4\left(0\right)\cos \left(\sin \left(0\right)\right)\right)+2\left(-\sin \left(0\right)\sin \left(\sin \left(0\right)\right)+\cos ^2\left(0\right)\cos \left(\sin \left(0\right)\right)\right)-2\cos \left(0\right)}{48}$$

    we get,

    $$=\dfrac{1}{6}$$
  • Question 5
    1 / -0
    The derivative of $$\cos^{-1}\dfrac{1-x^{2}}{1+x^{2}} w.r.t\ \tan^{-1}\dfrac{2x}{1-x^{2}}$$ is
  • Question 6
    1 / -0
    $$\displaystyle\lim _{ x\rightarrow \dfrac { x }{ 2 }  }{ \dfrac { \cot { x } -\cos { x }  }{ \left( \pi -2x \right) ^{ 3 } }  } $$ is equal to 
  • Question 7
    1 / -0
    The value of $$\lim_{x \rightarrow 1} \sec \dfrac{\pi}{2x} \log x$$ is-
    Solution

  • Question 8
    1 / -0
    $$\lim _ { x \rightarrow 1 } \{ 1 - x + [ x + 1 ] + [ 1 - x ] \} , \text { where } [ x ]$$ denotes greatest integer function is
    Solution

  • Question 9
    1 / -0
    If $$2f(\sin x)+\sqrt {2}f(\cos x)=\tan x,\ (x> 0)$$, then $$\displaystyle \lim _{ x\rightarrow 1 }{ \sqrt { 1-x } f\left( x \right) = }$$ 
  • Question 10
    1 / -0
    $$ \underset { x\rightarrow 0 }{ lim } \cfrac { 1+cos\left( \pi x \right)  }{ \left( 1-x \right)^ 2 }   $$ is equal to :
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now