Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    $$\underset { x\rightarrow 0 }{ \lim } \dfrac { { 3 }^{ 2x }-{ 2 }^{ 3x } }{ x } $$ is equal to

  • Question 2
    1 / -0

    Let $$f(x)=\dfrac{ax+b}{x+1},lim_{x\rightarrow 0} f(x)=2$$ and $$lim_{x\rightarrow \infty} f(x)=1$$ then $$f(-2)=$$

  • Question 3
    1 / -0

    $$\lim _ { x \rightarrow \infty } \left( \sqrt { x ^ { 2 } - x + 1 } - a x - b \right) = 0,$$   then the values of  $$a$$  and  $$b$$  are given by

  • Question 4
    1 / -0

    Let  $$U_{ { n } }=\dfrac { n! }{ (n+2)! } $$  where  $$n \in N .$$  If  $$S_{ { n } }=\sum _{ { n-1 } }^{ { n } } U_{ { n } }$$  then  $$\lim _ { n \rightarrow \infty } \mathrm { S } _ { n }$$  equals :

  • Question 5
    1 / -0

    Evaluate
    $$\mathop {\lim }\limits_{x \to 0} \cfrac{{1 - \cos (1 - \cos 2x)}}{{{x^4}}}$$

  • Question 6
    1 / -0

    If  $$y ( x ):$$  Solution of a  $$D.E.$$

    $$( x \log x ) \dfrac { d y } { d x } + y = 2 x \log x,$$   $$( x , 1 )$$
    $$y ( e ) = ? \quad x = e$$

  • Question 7
    1 / -0

    The value of $$\lim_{x\rightarrow \infty }$$ y In $$(\frac{sin (x+1/y)}{sin x})$$ when $$0 < x < \pi /2$$ is

  • Question 8
    1 / -0

    $$\displaystyle\lim_{n\rightarrow\infty}\left\{\dfrac{n!}{(kn)^n}\right\}^{\dfrac{1}{n}}, k\neq 0$$, is equal to?

  • Question 9
    1 / -0

    Let $$f(x)=\displaystyle\lim_{n\rightarrow \infty}\sum^{n-1}_{r=0}\dfrac{x}{(rx+1)\{(r+1)x+1\}}$$, then?

  • Question 10
    1 / -0

    $$\displaystyle \lim _{ x\rightarrow \infty }{ \left[\dfrac{n}{n^{2}+1^{2}}+\dfrac{n}{n^{2}+2^{2}}+\dfrac{n}{n^{2}+3^{2}}+....+\dfrac{1}{n^{5}}\right] }$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now