Self Studies

Limits and Derivatives Test - 31

Result Self Studies

Limits and Derivatives Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\underset { x\rightarrow 0 }{ \lim } \dfrac { { 3 }^{ 2x }-{ 2 }^{ 3x } }{ x } $$ is equal to
    Solution

    We have,

    $$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{3}^{2x}}-{{2}^{3x}}}{x}$$


    Applying L’ Hospital rule and we get,

    $$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{3}^{2x}}\log 3\times2-{{2}^{3x}}\log 2\times(3)}{1}$$


    Taking limit and we get,

    $$ ={{3}^{2\times 0}}\log 3^2-{{2}^{3\times 0}}\log 2^3 $$

    $$ =\log 9-\log 8 $$

    $$ =\log \dfrac{9}{8} $$


    Hence, this is the answer.

  • Question 2
    1 / -0
    Let $$f(x)=\dfrac{ax+b}{x+1},lim_{x\rightarrow 0} f(x)=2$$ and $$lim_{x\rightarrow \infty} f(x)=1$$ then $$f(-2)=$$
    Solution
    $$\underset{x\rightarrow 0}{lim} f(x)=2$$
    $$\Rightarrow \underset{x\rightarrow 0}{lim} \dfrac{ax+b}{x+1}=2$$
    $$\Rightarrow \dfrac{b}{1}=2$$
    $$\therefore b=2$$

    Its is also given that
    $$\underset{x\rightarrow \infty}{lim} f(x)=1$$
    $$\Rightarrow \underset{x\rightarrow \infty}{lim} \dfrac{ax+b}{x+1}=1$$

    $$\Rightarrow \underset{x\rightarrow \infty}{lim}\dfrac{a+\dfrac{b}{x}}{1+\dfrac{1}{x}}=1$$

    $$\Rightarrow \dfrac{a+0}{1+0}=1$$

    $$\therefore a=1$$
    Substituting the values of a and b in $$f(x)=\dfrac{ax+b}{x+1}$$, we get,

    $$f(x)=\dfrac{x+2}{x+1}$$

    $$\therefore f(-2)=\dfrac{-2+2}{-2+1}=0$$
  • Question 3
    1 / -0
    $$\lim _ { x \rightarrow \infty } \left( \sqrt { x ^ { 2 } - x + 1 } - a x - b \right) = 0,$$   then the values of  $$a$$  and  $$b$$  are given by
    Solution
    We have,
    $$\begin{array}{l} { \lim   }_{ x\to \infty  }\left( { \sqrt { { x^{ 2 } }-x+1 } -ax-b } \right) =0 \\ Put\, \, x=\cfrac { 1 }{ t }  \\ { \lim   }_{ t\to { 0^{ + } } }\left( { \sqrt { \cfrac { 1 }{ { { t^{ 2 } } } } -\cfrac { 1 }{ t } +1 } -\cfrac { a }{ t } -6 } \right) =0 \\ { \lim   }_{ x\to { 0^{ + } } }\cfrac { { { { \left( { 1-t+{ t^{ 2 } } } \right)  }^{ \cfrac { 1 }{ 2 }  } }-a-bt } }{ t } =0 \\ { \lim   }_{ x\to { 0^{ + } } }\cfrac { { \left( { 1-\cfrac { t }{ 2 } +\cfrac { { { t^{ 2 } } } }{ 2 }  } \right) -a-bt } }{ t } =0 \\ { \lim   }_{ x\to { 0^{ + } } }\cfrac { { \left( { 1-a } \right) +t\left( { -b-\cfrac { 1 }{ 2 }  } \right)  } }{ t } =0 \\ 1=a \\ and\, \, b=-\cfrac { 1 }{ 2 }  \\ Option\, \, \, C\, \, \, is\, \, correct\, \, answer. \end{array}$$
  • Question 4
    1 / -0
    Let  $$U_{ { n } }=\dfrac { n! }{ (n+2)! } $$  where  $$n \in N .$$  If  $$S_{ { n } }=\sum _{ { n-1 } }^{ { n } } U_{ { n } }$$  then  $$\lim _ { n \rightarrow \infty } \mathrm { S } _ { n }$$  equals :
    Solution
    $$\begin{array}{l} { U_{ n } }=\frac { { n! } }{ { \left( { n+2 } \right) ! } } =\frac { 1 }{ { \left( { n+1 } \right) \left( { n+2 } \right)  } } =\frac { { \left( { n+1 } \right) -\left( { n+1 } \right)  } }{ { \left( { n+1 } \right) \left( { n+2 } \right)  } }  \\ =\frac { 1 }{ { n+1 } } -\frac { 1 }{ { n+2 } }  \\ { S_{ n } }=\sum _{ n=1 }^{ n }{ { U_{ n } } } =\left[ { \left( { \frac { 1 }{ 2 } -\frac { 1 }{ 3 }  } \right) +\left( { \frac { 1 }{ 3 } -\frac { 1 }{ 4 }  } \right) +............+\left( { \frac { 1 }{ { n+1 } } -\frac { 1 }{ { n+2 } }  } \right)  } \right]  \\ { S_{ n } }=\frac { 1 }{ 2 } -\frac { 1 }{ { n+2 } }  \\ { \lim   }_{ n\to \infty  }{ S_{ n } }=\frac { 1 }{ 2 }  \\ Option\, \, C\, \, is\, \, correct\, \, answer. \end{array}$$
  • Question 5
    1 / -0
    Evaluate
    $$\mathop {\lim }\limits_{x \to 0} \cfrac{{1 - \cos (1 - \cos 2x)}}{{{x^4}}}$$
    Solution
    We have,
    $$\mathop {\lim }\limits_{x \to 0} \cfrac{{1 - \cos (1 - \cos 2x)}}{{{x^4}}}$$

    We know that
    $$\cos 2x=1-2\sin^2x$$

    Therefore,
    $$\mathop {\lim }\limits_{x \to 0} \cfrac{{1 - \cos (1 - (1-2\sin^2 x))}}{{{x^4}}}$$

    $$\mathop {\lim }\limits_{x \to 0} \cfrac{{1 - \cos (2\sin^2 x)}}{{{x^4}}}$$

    $$\mathop {\lim }\limits_{x \to 0} \cfrac{{1 - (1-2\sin^2 (\sin^2 x))}}{{{x^4}}}$$

    $$\mathop {\lim }\limits_{x \to 0} \cfrac{{2\sin^2 (\sin^2 x)}}{{{x^4}}}$$

    $$\mathop {\lim }\limits_{x \to 0} \cfrac{2\sin^2 (\sin^2 x)}{\sin^4 x}\times \dfrac{\sin^4 x}{x^4}$$

    $$2\mathop {\lim }\limits_{x \to 0} \left(\cfrac{\sin^2 (\sin^2 x)}{(\sin^2 x)}\right)^2\times \dfrac{\sin^4 x}{x^4}$$

    We know that
    $$\lim_{x\to\ 0}\dfrac{\sin x}{x}=1$$

    Therefore,
    $$\Rightarrow 2\times 1\times 1$$

    $$\Rightarrow 2$$

    Hence, this is the answer.
  • Question 6
    1 / -0
    If  $$y ( x ):$$  Solution of a  $$D.E.$$

    $$( x \log x ) \dfrac { d y } { d x } + y = 2 x \log x,$$   $$( x , 1 )$$
    $$y ( e ) = ? \quad x = e$$
    Solution
    $$\begin{array}{l} From\, \, the\, given\, ,\, data \\ { e^{ \int { \frac { { dx } }{ { x\log  x } }  }  } }\alpha \left( { \frac { { dy } }{ { dx } } +\frac { y }{ { x\log  x } } =2 } \right) \, \, ---\left( 1 \right)  \\ Now,\, solving \\ I=\int { \frac { { dx } }{ { x\log  x } }  } \, \, \, let\, \, \, \log  x=t,\, dt=\frac { { dx } }{ x }  \\ I=\int { \frac { { dt } }{ t }  } =\log  t \\ hence,\, \left( 1 \right) \, becomes\,  \\ \frac { d }{ { dx } } \left( { { e^{ \log  t } }y } \right) =2{ e^{ \log  t } } \\ \frac { d }{ { dx } } \left( { y\log  x } \right) =2\log  x \\ \int { d\left( { y\log  x } \right)  } =2\int { \log  x } dx \\ y\log  x=2\left( { x\log  x-x } \right)  \\ Hence,\,  \\ y\left( x \right) =f\left( x \right) =\frac { { 2\left( { x\log  x-x } \right)  } }{ { \log  x } }  \\ Now, \\ y\left( e \right) =\frac { { 2e\left( { \log  e } \right) -e } }{ { \log  e } } =e \\ Hence,\, the\, option\, A\, is\, the\, \, correct\, answer. \end{array}$$
  • Question 7
    1 / -0
    The value of $$\lim_{x\rightarrow \infty }$$ y In $$(\frac{sin (x+1/y)}{sin x})$$ when $$0 < x < \pi /2$$ is
  • Question 8
    1 / -0
    $$\displaystyle\lim_{n\rightarrow\infty}\left\{\dfrac{n!}{(kn)^n}\right\}^{\dfrac{1}{n}}, k\neq 0$$, is equal to?
    Solution

  • Question 9
    1 / -0
    Let $$f(x)=\displaystyle\lim_{n\rightarrow \infty}\sum^{n-1}_{r=0}\dfrac{x}{(rx+1)\{(r+1)x+1\}}$$, then?
    Solution

  • Question 10
    1 / -0
    $$\displaystyle \lim _{ x\rightarrow \infty }{ \left[\dfrac{n}{n^{2}+1^{2}}+\dfrac{n}{n^{2}+2^{2}}+\dfrac{n}{n^{2}+3^{2}}+....+\dfrac{1}{n^{5}}\right] }$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now