Self Studies

Limits and Derivatives Test - 38

Result Self Studies

Limits and Derivatives Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f(x)$$ be a polynomial function of second degree.If $$f(1)=f(-1)$$ and  $$a,b,c$$ are in A.P $$ f'(a)$$,$$f'(b)$$,$$f'(c)$$ are in 
    Solution
    Let $$f\left( x \right) ={ px }^{ 2 }+qx+r$$
    Differentiatin g w.r. to $$x$$, we get
    $$f^{ ' }\left( x \right) =2px+q$$
    Now,
    $$f\left( -1 \right) =f\left( 1 \right) $$
    $$\therefore p-q+r=p+q+r$$
    $$\therefore q=0$$
    $$\therefore f^{ ' }\left( x \right) =2px$$
    $$f^{ ' }\left( a \right) =2pa.f^{ ' }\left( b \right) =2pb,f^{ ' }\left( c \right) =2pc$$
    Since $$a,b,c $$ are in $$A.P.$$, therefore
    $$2b=a+c$$
    $$4pb=2pa+2pc$$
    $$2f^{ ' }\left( b \right) =f^{ ' }\left( a \right) +f^{ ' }\left( c \right) $$
    $$\therefore f^{ ' }\left( a \right) ,f^{ ' }\left( b \right) ,f^{ ' }\left( c \right) $$ are in A.P
  • Question 2
    1 / -0
    If $$\phi (x) =\displaystyle \lim_{n \rightarrow \infty} \frac{x^{2n} f(x) + g(x)}{1 + x^{2n}}$$, then
    Solution
    We have,
    $$\displaystyle \lim_{n \rightarrow \infty} x^{2n} = \left\{\begin{matrix}0,& if  |x| < 1\\ \infty, & if  |x| > 1 \\ 1, & if |x| = 1\end{matrix}\right.$$
    Thus, we have the following cases:
    CASE I When $$- 1 < x < 1$$
    In this case, we have $$\displaystyle \lim_{n \rightarrow \infty} x^{2n} = 0$$
    $$\therefore \phi (x) =\displaystyle  \lim_{n \rightarrow \infty} \frac{x^{2n} f(x) + g(x)}{1 + x^{2n}} = g(x)$$
    CASE II When $$|x| > 1$$
    In this case, we have $$\displaystyle \lim_{n \rightarrow \infty} \displaystyle \frac{1}{x^{2n}} = 0$$
    $$\therefore \phi (x) = \displaystyle \lim_{n \rightarrow \infty} \frac{x^{2n} f(x) + g(x)}{1 + x^{2n}}$$
    $$\Rightarrow \phi (x) =\displaystyle  \lim_{n \rightarrow \infty} \frac{f(x) + \displaystyle \frac{g(x)}{x^{2n}}}{1 + \displaystyle \frac{1}{x^{2n}}} = \displaystyle \frac{f(x) + 0}{1 + 0} = f(x)$$
    CASE III  When $$|x| = 1$$
    In this case, we have $$x^{2n} = 1\Rightarrow \displaystyle \lim_{n \rightarrow \infty } x^{2n}=1$$.
    $$\therefore \phi (x) = \displaystyle \frac{f(x) + g(x)}{2}$$
  • Question 3
    1 / -0
    Let $$f(x) = \sqrt{x - 1} + \sqrt{x + 24 - 10\sqrt{x - 1}}, 1 \le x \le 26$$ be a real valued function, then $$f'(x)$$ for $$1 < x < 26$$ is
    Solution
    We have,
    $$f(x) = \sqrt{x - 1} + \sqrt{x + 24 - 10\sqrt{x - 1}}, 1 < x < 26$$

    Rearrange the terms so as to get $${ \left( a-b \right)  }^{ 2 }=a^2-2ab+b^2$$

    $$f(x) = \sqrt{x - 1} + \sqrt{(x - 1) + 25 - 10\sqrt{x - 1}}$$

    $$\therefore f(x) = \sqrt{x - 1} + \sqrt{(\sqrt {x - 1} - 5)^2}$$

    $$f(x) = \sqrt{x - 1} + \left|\sqrt{x - 1} - 5\right|$$

    $$

    \therefore f(x) = \sqrt{x - 1} - \left(\sqrt{x - 1} - 5\right) \quad\quad

    [\because\sqrt{x - 1} - 5 < 0 \mbox{ for } 1 < x < 26]$$
    Now, differentiating w.r. to $$x$$, we get
    $$\therefore f'(x) = 0$$ for all $$x \in (1, 26)$$
  • Question 4
    1 / -0
    Let $$f$$ be a differentiable function satisfying $$f(x) + f(y) + f(z) + f(x)f(y)f(z) = 14$$ for all $$x,\space y,\space z \in R$$
    Then,
    Solution
    We have,
    $$f(x) + f(y) + f(z) + f(x)f(y)f(z) = 14$$ for all $$x,\space y,\space z \in R \quad\quad ...(i)$$
    Putting $$x = y = z = 0$$, we get,
    $$3f(0) + \left\{f(0)\right\}^3 = 14$$
    $$\left\{f(0)\right\}^3 + 3f(0) - 14 = 0$$
    $$f(0) = 2.$$
    Now, putting $$y = z = x$$ in $$(i)$$, we get
    $$3f'(x) + 3\left\{f(x)\right\}^2f'(x) = 0 \quad$$ for all $$x \in R$$
    $$\left\{\left\{f(x)\right\}^2 + 1\right\}f'(x) = 0 \quad$$ for all $$x \in R$$
    $$ f'(x) = 0 \quad$$ for all $$x \in R$$
  • Question 5
    1 / -0
    Given  $$f(x)=-\displaystyle \frac{x^3}{3}+x^2\sin 1.5a-x\sin a.\sin 2a-5 \arcsin (a^2-8a+17)$$ then :
    Solution
    Given:
    $$f(x) = \dfrac{-x^3}{3} + x^2 \sin 1.5\, a - x \sin a . \sin 2a - 5\, arc \sin (a^2 - 8a + 17)$$

    $$f(x) = \dfrac{-x^3}{3} + x^2\sin 1.5\, a - x \sin a \times \sin 2a-5\sin^{-1}(a^2-8a+17)$$                   $$\left(\sin c + \sin d = 2\sin \dfrac{c+d}{2} \cos \dfrac{c-d}{2}\right)$$

    For the function to be defined

    $$-1\le a^2 - 8a + 17 \le 1$$

    $$-1 \le (a-4)^2 + 1 \le 1$$

    $$-1-1\le (a-4)^2 \le 1-1$$

    $$-2 \le (a-4)^2 \le 0$$

    $$a -4 = 0 \Rightarrow a = 4$$

    Putting value of '$$a$$' in the +ve $$f(x)$$

    $$f(x) = \dfrac{-x^3}{3} + x^2 \sin 6 - x\sin 4 \times \sin 8 - 5\dfrac{\pi}{2}$$      $$\left[\because \sin^{-1}1 = \dfrac{\pi}{2}\right]$$

    domain $$x \in R \because $$ polynomial function

    $$f'(x) = -\dfrac{3x^2}{3} + 2x\sin 6 - \sin 4 \times \sin 8$$

    $$= -x^2 + 2\sin 6x - \sin 4 \times \sin 8$$

    Putting $$x = \sin 8$$

    $$f'(\sin 8) = -\sin^28 + 2\sin 6 \sin 8 - \sin 4 \sin 8$$

    $$= \sin 8 [2\sin 6 - \sin 4 - \sin 8]$$

    $$=\sin 8 [ 2\sin 6 - (\sin 4 + \sin 8)]$$

    $$=\sin 8[2\sin 6 - 2\sin 6\cos 2]$$

    $$= 2\sin 6 \sin 8 [ 1 - \cos 2]$$

    Value of $$\cos 2 = 0.999$$

    $$\therefore 1 - \cos 2 = +ve$$

    $$6\, rad \approx  344^o$$

    $$344^o$$ is in $$IV^{th}$$ quadrant

    $$\therefore \sin 6$$ is (-ve)

    $$8\, rad \approx  548.4^o$$

    $$548.4^o$$ is in $$II^{th}$$ quadrant

    $$\therefore \sin 8$$ is (+ve)

    $$\therefore f'(\sin 8) = 2\,\underbrace{\sin 6}_{-ve} \,\underbrace{\sin 8}_{+ve} \,\underbrace{(1-\cos 2)}_{+ve}$$

    $$\therefore f'(\sin 8)$$ is +ve

    $$\therefore f'(\sin 8) < 0$$      $$\to$$  option D
  • Question 6
    1 / -0
    Suppose, $$A=\displaystyle \frac {dy}{dx}$$ of $$x^2+y^2=4$$ at $$(\sqrt 2, \sqrt 2), B=\displaystyle \frac {dy}{dx}$$ of $$sin y+sin x=sin x\cdot sin y$$ at $$(\pi, \pi)$$ and $$C=\displaystyle \frac {dy}{dx}$$ of $$2e^{xy}+e^xe^y-e^x=e^{xy+1}$$ at $$(1, 1)$$, then $$(A-B-C)$$ has the value equal to .....
    Solution
    $$A: \displaystyle \frac {d}{dx} (x^2+y^2=4)$$ at $$(\sqrt 2, \sqrt 2))$$
    $$2x+2y\displaystyle \frac { dy }{ dx } =0$$
    $$\displaystyle \frac { dy }{ dx } =-\displaystyle \frac { x }{ y } =-\displaystyle \frac { \sqrt { 2 }  }{ \sqrt { 2 }  } =-1$$
    $$ B: \displaystyle \frac {d}{dx}(\sin y+\sin x=\sin x\cdot \sin y)$$ at $$(\pi, \pi)$$
    $$\cos { y\displaystyle \frac { dy }{ dx }  } +\cos { x } =\sin { x } \cos { y\displaystyle \frac { dy }{ dx } +\sin { y } \cos { x }  } $$
    $$\displaystyle \frac { dy }{ dx } \left( \cos { y } -\sin { x } \cos { y }  \right) =\sin { y\cos { x-\cos { x }  }  } $$
    $$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { \cos { x\left( \sin { y-1 }  \right)  }  }{ \cos { y\left( 1-\sin { x }  \right)  }  } $$
    $$B=\displaystyle \frac { -1\left( 0-1 \right)  }{ -1\left( 1-0 \right)  } =-1$$
    $$C: \displaystyle \frac {d}{dx}(2e^{xy}+e^xe^y-e^x=e^{xy+1})$$ at $$(1, 1)$$
    $$\left[ 2{ e }^{ xy }\left( x\displaystyle \frac { dy }{ dx } +y \right)  \right] +{ e }^{ x }{ e }^{ y }\displaystyle \frac { dy }{ dx } +{ e }^{ y }{ e }^{ x }-{ e }^{ x }={ e }^{ xy+1 }\left( x\displaystyle \frac { dy }{ dx } +y \right) $$
    $$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { y{ e }^{ xy+1 }-2y{ e }^{ xy }-{ e }^{ x+y }+{ e }^{ x } }{ 2x{ e }^{ xy }+{ e }^{ x+y }-x{ e }^{ xy+1 } } $$.......... since $${ e }^{ x }{ e }^{ y }={ e }^{ x+y }$$
    $$C=\displaystyle \frac { { e }^{ 2 }-2{ e }^{ 1 }-{ e }^{ 2 }+{ e }^{ 1 } }{ 2{ e }^{ 1 }+{ e }^{ 2 }-{ e }^{ 2 } } $$
    $$=\displaystyle \frac { -{ e }^{ 1 } }{ 2{ e }^{ 1 } } =-\displaystyle \frac { 1 }{ 2 } $$
    Therefore $$A-B-C=\displaystyle \frac { 1 }{ 2 }$$
  • Question 7
    1 / -0
    Suppose $$A=\displaystyle \frac{dy}{dx}$$ when $$x^2+y^2=4$$ at $$(\sqrt{2},\sqrt{2})$$,$$ B=\displaystyle \frac{dy}{dx}$$ when $$\sin y+ \sin x=\sin x-\sin y$$ at $$(\pi,\pi)$$ and $$C=\displaystyle  \frac{dy}{dx}$$ when $$2e^{xy}+e^x e^y-e^x-e^y=e^{xy+1}$$ at $$(1,1)$$, then $$(A+B+C)$$ has the value equal to 
    Solution
    $$A: \displaystyle \frac {d}{dx} (x^2+y^2=4)$$ at $$(\sqrt 2, \sqrt 2))$$
    $$2x+2y\displaystyle \frac { dy }{ dx } =0$$
    $$\displaystyle \frac { dy }{ dx } =-\displaystyle \frac { x }{ y } =-\displaystyle \frac { \sqrt { 2 }  }{ \sqrt { 2 }  } =-1$$
    $$ B: \displaystyle \frac {d}{dx}(\sin y+\sin x=\sin x\cdot \sin y)$$ at $$(\pi, \pi)$$
    $$\cos

    { y\displaystyle \frac { dy }{ dx }  } +\cos { x } =\sin { x } \cos {

    y\displaystyle \frac { dy }{ dx } +\sin { y } \cos { x }  } $$
    $$\displaystyle \frac { dy }{ dx } \left( \cos { y } -\sin { x } \cos { y }  \right) =\sin { y\cos { x-\cos { x }  }  } $$
    $$\displaystyle

    \frac { dy }{ dx } =\displaystyle \frac { \cos { x\left( \sin { y-1 } 

    \right)  }  }{ \cos { y\left( 1-\sin { x }  \right)  }  } $$
    $$B=\displaystyle \frac { -1\left( 0-1 \right)  }{ -1\left( 1-0 \right)  } =-1$$
    $$C: \displaystyle \frac {d}{dx}(2e^{xy}+e^xe^y-e^x-{ e }^{ y }=e^{xy+1})$$ at $$(1, 1)$$
    $$\left[

    2{ e }^{ xy }\left( x\displaystyle \frac { dy }{ dx } +y \right) 

    \right] +{ e }^{ x }{ e }^{ y }\displaystyle \frac { dy }{ dx } +{ e }^{

    y }{ e }^{ x }-{ e }^{ x } -{ e }^{ y }\frac { dy }{ dx } ={ e }^{ xy+1 }\left( x\displaystyle \frac {

    dy }{ dx } +y \right) $$
    $$\displaystyle \frac { dy }{ dx }

    =\displaystyle \frac { y{ e }^{ xy+1 }-2y{ e }^{ xy }-{ e }^{ x+y }+{ e

    }^{ x } }{ 2x{ e }^{ xy }+{ e }^{ x+y }-x{ e }^{ xy+1 }-{ e }^{ y } } $$..........

    since $${ e }^{ x }{ e }^{ y }={ e }^{ x+y }$$
    $$C=\displaystyle \frac { { e }^{ 2 }-2{ e }^{ 1 }-{ e }^{ 2 }+{ e }^{ 1 } }{ 2{ e }^{ 1 }+{ e }^{ 2 }-{ e }^{ 2 }-{ e }^{ 1 } }=-{1} $$
    $$A+B+C=-1-1-1=-3$$
  • Question 8
    1 / -0
    If $$\displaystyle\lim_{x\rightarrow a}{(f(x)+g(x))}=2$$ and $$\displaystyle\lim_{x\rightarrow a}{(f(x)-g(x))}=1$$, 
    then the value of $$\displaystyle\lim_{x\rightarrow a}{f(x)g(x)}$$ is?
    Solution
    Given, $$\displaystyle\lim_{x\rightarrow a}{(f(x)+g(x))}=2$$ and $$\displaystyle\lim_{x\rightarrow a}{(f(x)-g(x))}=1$$,

    Lets, assume $$F(x) = (f(x) + g(x))$$ and $$ G(x) = (f(x) - g(x))$$
    $$\because$$ Limits of both $$F(x)$$ and $$G(x)$$ exists as $$x\rightarrow a$$, we can say that
    $$\displaystyle\lim_{x\rightarrow a}{(F(x)+G(x))}$$ and $$\displaystyle\lim_{x\rightarrow a}{(F(x)-G(x))}$$ also exists.

    $$\displaystyle\therefore\lim_{x\rightarrow a}{(F(x)+G(x))} = 3$$
    $$\displaystyle\Rightarrow 2\times\lim_{x\rightarrow a}{f(x)} = 3$$
    $$\Rightarrow \lim_{x\rightarrow a}{f(x)} = \dfrac{3}{2}$$
    Similarly,
    $$\displaystyle\lim_{x\rightarrow a}{(F(x)-G(x))} = 1$$
    $$\displaystyle\Rightarrow 2\times\lim_{x\rightarrow a}{g(x)} = 1$$
    $$\Rightarrow \lim_{x\rightarrow a}{g(x)} = \dfrac{1}{2}$$
    Hence,
    $$\displaystyle\lim_{x\rightarrow a}{(f(x)\cdot g(x))} = \lim_{x\rightarrow a}{f(x)}\cdot\lim_{x\rightarrow a}{g(x)} = \dfrac{3}{2}\times \dfrac{1}{2} = \dfrac{3}{4}$$

    Hence, option B.
  • Question 9
    1 / -0
    Let f and g be differentiable function such that $${f}'\left ( x \right )=2g\left ( x \right )$$ and $${g}'\left ( x \right )=-f\left ( x \right )$$, and let $$T\left ( x \right )=\left ( f\left ( x \right ) \right )^{2}-\left ( g\left ( x \right ) \right )^{2}$$. Then $${T}'\left ( x \right )$$ is equal to
    Solution
    The given equation is:
    $$T(x) = f(x)^2 - g(x)^2$$

    $$\Rightarrow T(x) = (f(x) - g(x))(f(x) + g(x))$$

    Differentiating once w.r.t to x we get,

    $$\Rightarrow T'(x) = (f'(x) + g'(x))(f(x)-g(x)) + (f'(x)-g'(x))(f(x)+g(x))$$

    $$\Rightarrow T'(x) = (2g(x)-f(x))(f(x)-g(x)) + (2g(x)+f(x))(f(x)+ g(x))$$

    $$\Rightarrow T'(x) = 2g(x)f(x) - 2g(x)^2 -f(x)^2 + f(x)g(x) +2g(x)f(x) + 2g(x)^2 +f(x)^2 + f(x)g(x)$$

    $$\Rightarrow T'(x)= 6f(x)g(x)$$     .....Answer


  • Question 10
    1 / -0
    The value of $$\displaystyle \underset { n\rightarrow \infty  }{ lim } \left( \frac { 1 }{ n+1 } +\frac { 1 }{ n+2 } +...+\frac { 1 }{ 6n }  \right) $$ is
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now