Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    $$y=sin(x^2): \dfrac{dy}{dx}=$$

  • Question 2
    1 / -0

    The solution of $$\cos y +(x \sin y-1)\dfrac{dy}{dx}=0$$ is 

  • Question 3
    1 / -0

    If $$\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} + x + 1}}{{x + 1}} - ax - b} \right)\, = 4$$,then

  • Question 4
    1 / -0

    Find derivative of given function w.r.t. the respective independent variable $$y= \frac{(sinx+cosx)}{cosx}$$

  • Question 5
    1 / -0

    $$If {A_i} = \frac{{x - {a_i}}}{{\left| {x - {a_i}} \right|}}, \,i = 1,2,3,.....n$$ and $${a_1}< {a_2}< {a_3}....< {a_{n,}} \, then$$
    $$\mathop {\lim }\limits_{x \to {a_m}} \left( {{A_1}{A_2}......{A_n}} \right), 1 \le m \le n$$

  • Question 6
    1 / -0

    $$\displaystyle \mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\cot x - \cos x}}{{{{\left( {\frac{\pi }{2} - x} \right)}^3}}}$$

  • Question 7
    1 / -0

    Let p= $$\lim_{x\rightarrow 0+}(1+tan^{2}\sqrt{x})^{\frac{1}{2x}}$$ then log p is equal to :

  • Question 8
    1 / -0

    Find that $$\frac { d } { d x } \left[ \frac { 2 } { \pi } \sin x ^ { 0 } \right] = ?$$

  • Question 9
    1 / -0

    Consider $$A=\begin{bmatrix} \cos { \theta  }  & \sin { \theta  }  \\ -\sin { \theta  }  & \cos { \theta  }  \end{bmatrix}$$, then the value of $$\lim_{n \rightarrow \infty} \dfrac{A^{n}}{n}$$ (where $$\theta \in R$$) is equal to 

  • Question 10
    1 / -0

    $$\dfrac{d}{dx}\left\{\tan^{-1}\dfrac{\sqrt{x}+\sqrt{a}}{1-\sqrt{ax}}\right\}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now