Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    $$\displaystyle\underset{x\rightarrow 0}{Lt}\left(cosec x-\dfrac{1}{x}\right)=?$$

  • Question 2
    1 / -0

    $$\displaystyle \lim_{x \rightarrow 0}\dfrac {1}{x\sqrt {x}}\left(a\ arc\ tan \dfrac {\sqrt {x}}{a}-b\ arc\ \tan \dfrac {\sqrt {x}}{b}\right)$$ has the value equal to

  • Question 3
    1 / -0

    The value of following derivative:

    $$\dfrac{d}{dx}\left(\dfrac{\sin x+\cos x}{\sqrt{1+\sin 2x}}\right), \left(0<x<\dfrac{\pi}{4}\right)$$ is:

  • Question 4
    1 / -0

    The value of $$\displaystyle\lim_{n\rightarrow \infty}n(n\{ln (n)-ln (n+1)\}+1)$$ is?

  • Question 5
    1 / -0

    $$\displaystyle\lim_{n\rightarrow \infty}\left(\tan\theta +\dfrac{1}{2}\tan \dfrac{\theta}{2}+\dfrac{1}{2^2}\tan \dfrac{\theta}{2^2}+...+\dfrac{1}{2^n}\tan\dfrac{\theta}{2^n}\right)$$ equals?

  • Question 6
    1 / -0

    $$\displaystyle \lim _{ x\rightarrow \frac { \pi  }{ 4 }  }{ { \left( \sin { 2x }  \right)  }^{ \sec ^{ 2 }{ 2x }  } }$$ is equal to 

  • Question 7
    1 / -0

    $$ \underset { x\rightarrow 0 }{ lim } \left[ { x }^{ 2 }cosec\quad \left( { x }^{ 2 } \right)^0 \right]  $$is equal to :

  • Question 8
    1 / -0

    The value of $$\lim_{x \rightarrow -1} \dfrac{\sqrt{\pi}-\sqrt{\cos^{-1}x}}{\sqrt{x+1}}$$ is given by 

  • Question 9
    1 / -0

    If $$\lim_{x \rightarrow 0}\dfrac{a \sin x-bx+cx^{2}+x^{3}}{2x^{2} \log(1+x)-2x^{3}+x^{4}}$$ exists and is finite, then the value of $$a,b,c$$ are respectively 

  • Question 10
    1 / -0

    $$ \underset { x\rightarrow a }{ lim } \cfrac { sin\quad x-sin\quad a }{ \sqrt [ 3 ]{ x } -\sqrt [ 3 ]{ a }  }  $$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now