Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    The value of $$\displaystyle \lim_{x\rightarrow 0}\dfrac {1-\cos^{3}x}{x\sin x\cos x}$$ is

  • Question 2
    1 / -0

    Integrate:
     $$lim_{x\rightarrow 0}\dfrac{(1-\cos{2x})^{2}}{2x\tan{x}-x\tan{2x}}$$

  • Question 3
    1 / -0

    The value of $$\lim_{x \rightarrow 0} \left(\dfrac{\tan x}{x}\right)^{1/x^{3}}$$ is-

  • Question 4
    1 / -0

    $$ \underset { x\rightarrow 0 }{ lim } \cfrac { { \left( 25 \right)  }^{ x }-2\left( 15 \right)^ x+{ 9 }^{ x } }{ cos6x-cos2x }  $$ is equal to :

  • Question 5
    1 / -0

    $$Lt_{x\to 0} \dfrac{sin x - x+\dfrac{x^3}{6}}{x^5}=$$_________

  • Question 6
    1 / -0

    If x + y = sin (x + y) then $$\dfrac{dy}{dx}$$ =

  • Question 7
    1 / -0

    $${d}{dx}(sin^{5} x. sin5x) =$$

  • Question 8
    1 / -0

    The value of $$\lim _{ x\rightarrow 0 }{ \dfrac { 1-\cos { ^{ 3 }x }  }{ x\sin { x\cos { x }  }  }  }$$ is

  • Question 9
    1 / -0

    If the anti derivative of f(x) is $$e^x$$ and that of g(x) of cos x respectively, then $$\int f(x) cos x dx + \int g(x) e^x dx=$$_____________.

  • Question 10
    1 / -0

    The ant derivative of $$\dfrac{1}{\left(21+x\tan x\right)^{2}}$$ with respect to $$x$$ is equal to 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now