Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    $$\underset { x\rightarrow 1 }{ lim } \frac { xtan(x-[x]) }{ x-1 } $$ is:

  • Question 2
    1 / -0

    The value of $$\displaystyle \lim_{x \rightarrow 0} \left(\dfrac{\sin x}{x}\right)^{1/x^{2}}$$ is 

  • Question 3
    1 / -0

    If z = z(x) and $$(2cosx)\frac { dz }{ dx } +(sinx)z=sinx$$, z(0) = 3, then $$z(\frac { \pi  }{ 2 } )$$ equals :

  • Question 4
    1 / -0

    For the function, $$f(x) = (x - \frac{1}{x})^2$$, the first derivative with respect to x is 

  • Question 5
    1 / -0

    The value of $$lim_{x\to 0} \dfrac{sin(\pi cos^2 x)}{x^2}$$ equals 

  • Question 6
    1 / -0

    The value of $$lim_{\theta \to \dfrac{\pi}{2}} (sec \theta - tan \theta)$$ equals 

  • Question 7
    1 / -0

    $$\lim- {x\to 0}$$ $$\dfrac{1- cos(1 - cos4x)}{x^4}$$ is equal to : 

  • Question 8
    1 / -0

    The value of $$\displaystyle\lim_{x\to 0} |x|^{sinx}$$ equals 

  • Question 9
    1 / -0

    If $$\displaystyle \lim _{ x\rightarrow 0 }{ \dfrac { \left( \sin { nx }  \right) \left[ (a-n)nx-tanx \right]  }{ { x }^{ 2 } }  } =0$$, then the value of $$a$$

  • Question 10
    1 / -0

    Arrange the following limits in the ascending order :
    (1)  $$\lim _ { x \rightarrow \infty } \left( \dfrac { 1 + x } { 2 + x } \right) ^ { x + 2 }$$

    (2)  $$\lim _ { x \rightarrow 0 } ( 1 + 2 x ) ^ { 3 / x }$$

    (3)  $$\lim _ { \theta \rightarrow 0 } \dfrac { \sin \theta } { 2 \theta }$$

    (4)  $$\lim _ { x \rightarrow 0 } \dfrac { \log _ { e } ( 1 + x ) } { x }$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now