Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    The value of $$lim_{x \to 0} (\dfrac{1}{x^2} - cotx)$$ equals 

  • Question 2
    1 / -0

    $$ \displaystyle \lim _{ x-\infty  }{ sgn\left( \cot{\dfrac { { \pi x }^{ 2019 } }{ { x }^{ 2019 }+7 }}  \right)  }$$

  • Question 3
    1 / -0

    $$\displaystyle\lim_{x \to \pi/2} (sec x +tan x)$$ is equal to 

  • Question 4
    1 / -0

    $$\underset { x\rightarrow 0 }{ lim } \dfrac { x\tan { 2x } -2\tan { 2x }  }{ { \left( 1-cos2x \right)  } }$$ equals:

  • Question 5
    1 / -0

    $$\underset{x \rightarrow 0}{Lt} \dfrac{sin x - x + x^3 / 6}{x^5}$$ = 

  • Question 6
    1 / -0

    $$\displaystyle \lim_{x\rightarrow0 }{\dfrac{(\cos\alpha)^{x}-(\sin\alpha)^{x}-\cos 2\alpha}{(x-4)}}, \alpha\in \left(0, \dfrac{\pi}{2}\right)$$ is equal to

  • Question 7
    1 / -0

    $$\displaystyle\lim_{x\to \pi/2} \dfrac{sinx-(sinx)^{sin x}}{1-sin x + In sin x}$$ is equal to

  • Question 8
    1 / -0

    $$lim_{n\to \infty} \Sigma^n_{r=1} \dfrac{\pi}{n} sin(\dfrac{\pi r}{n})$$ is equal to

  • Question 9
    1 / -0

    If $$\mathop {\lim }\limits_{x \to 0} \frac{{x\left( {1 + a\cos x} \right) - b\sin x}}{{{x^3}}} = 1,$$ then

  • Question 10
    1 / -0

    Evaluate : $$\displaystyle\lim _{ x\rightarrow 0 }{ \left( \dfrac { { e }^{ x\ell n\left( { 3 }^{ x }-1 \right)  }-\left( { 3 }^{ x }-1 \right) ^{ x }\sin { x }  }{ { e }^{ x\ell nx } }  \right)  } $$ is equal to 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now