Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    $$\underset { x\rightarrow 0 }{ Lt } \cfrac {tanx-x}{x^2tanx}$$ equals:

  • Question 2
    1 / -0

    $$\dfrac { d }{ dx } \left[ \left( \dfrac { { tan }^{ 2 }2x-{ tan }^{ 2 }x }{ 1-{ tan }^{ 2 }2x{ tan }^{ 2 }x }  \right) cot3x \right]$$

  • Question 3
    1 / -0

    $$\displaystyle\lim_{x\rightarrow \infty}\left(\dfrac{x+1}{2x+1}\right)^{x^2}$$ equals?

  • Question 4
    1 / -0

    $$\underset { x\rightarrow \pi/2 }{ lim } \left(\dfrac{cosec x-1}{cot^2x}\right)= $$

  • Question 5
    1 / -0

    $$\underset{x \rightarrow \infty}{lim} \dfrac{2 \tan^{-1} x}{\pi}$$ equals $$e^L$$ then $$L$$ is equal to

  • Question 6
    1 / -0

    $$\displaystyle \lim _{ x\rightarrow x/2 } \dfrac { \left[ 1-\tan { \left( \dfrac { x }{ 2 }  \right)  }  \right] \left[ 1-\sin { x }  \right]  }{ \left[ 1+\tan { \left( \dfrac { x }{ 2 }  \right)  }  \right] \left[ \pi -2x \right] ^{ 3 } } $$ is

  • Question 7
    1 / -0

    $$\displaystyle \lim _{ \theta \rightarrow 0 }{ \frac { 4\theta \left( \tan { \theta -2\theta \tan { \theta  }  }  \right)  }{ { \left( 1-\cos { 2\theta  }  \right)  }^{ 2 } }  } $$ is

  • Question 8
    1 / -0

    $$\displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { 3\sin { \left( { x }^{ 9} \right) -\sin { \left( { x }^{ 9 } \right)  }  }  }{ { x }^{ 3 } }  } =q$$

  • Question 9
    1 / -0

    evaluate$$ \underset { x\rightarrow 0 }{ lim } \frac { x-\int _{ 0 }^{ x }{ { cost }^{ 2 }dt }  }{ { x }^{ 3 }-6x } $$

  • Question 10
    1 / -0

    If $$k$$  is an integer such that $$\lim_{n \rightarrow \infty} \left[\left(\cos \dfrac{k\pi}{4}\right)^{2}-\left(\cos \dfrac{k\pi}{6}\right)^{2}\right]=0$$ then :

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now