Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    The value of $$\underset{x \rightarrow 0}{lim} \cos \,ec^4 \,x \displaystyle \overset{x^2}{\underset{0}{\int}} \dfrac{In(1 + 4t)}{1 + t^2}dt$$ is

  • Question 2
    1 / -0

    If $$g(x)=\frac { x }{ \left[ x \right]  } for\quad x>2\quad then\quad \underset { x\rightarrow { 2 }^{ + } }{ Lim } \frac { g\left( x \right) -g\left( 2 \right)  }{ x-2 } $$

  • Question 3
    1 / -0

    $$\lim_{x\rightarrow 0}\frac{ln(sin 3x)}{ln(sin x)}$$ is equal to

  • Question 4
    1 / -0

    If $$\displaystyle \lim_{x\rightarrow 0}\dfrac {ae^{-x}-b\cos x-\dfrac {1}{2}cx}{x\cos x}=2$$ then the value of $$a+b+c$$ is-

  • Question 5
    1 / -0

    $$\underset{x \rightarrow 2}{lim} \dfrac{\sqrt[3]{60 + x^2} - 4}{\sin (x - 2)}$$ equals 

  • Question 6
    1 / -0

    $$\underset{x \rightarrow n/2}{lim} \dfrac{\cot x - \cos x}{(\pi - 2x)^3}$$ equals

  • Question 7
    1 / -0

    $$\lim_{x\rightarrow 0}\dfrac{2\left(\sqrt{3}\sin\left(\dfrac{\pi}{6}+x\right)-\cos\left(\dfrac{\pi}{6}+x\right)\right)}{x\sqrt{3}\left(\sqrt{3}\cos x-\sin x\right)}$$

  • Question 8
    1 / -0

    $$\lim_{x\rightarrow \pi/4}\dfrac{2\sqrt{2}-\left(\cos x+\sin x\right)^{2}}{1-\sin 2x}$$ is equal to 

  • Question 9
    1 / -0

    $$\underset { x\rightarrow \pi /4 }{ Lim } \dfrac { 2\sqrt { 2 } \left( cosx+sinx \right) ^{ 3 } }{ 1-sin2x } =2$$ is equal to

  • Question 10
    1 / -0

    $$P= \lim_{x \rightarrow o^{+}} (1+ \tan^{2} \sqrt{x})^{1/2x}=$$____

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now