Self Studies

Limits and Derivatives Test - 54

Result Self Studies

Limits and Derivatives Test - 54
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\lim _{ x\rightarrow 0 }{ \frac { { 27 }^{ x }-{ 9 }^{ x }-{ 3 }^{ x }+1 }{ \sqrt { 2 } -\sqrt { 1+\cos { x }  }  } = } $$
    Solution

  • Question 2
    1 / -0
    $$\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{{x^2}\sin \left( {\dfrac{1}{x}} \right) - x}}{{1 - \left| x \right|}}} \right) = $$
    Solution

  • Question 3
    1 / -0
    $$\lim _{ x\rightarrow  }{ 0 } \{ (sinx-x)/{ x }^{ 3 })\} $$ equals: 
    Solution

  • Question 4
    1 / -0
    $$ \lim _{x \rightarrow a}\left(2-\frac{a}{x}\right)^{\tan \left(\frac{\pi x}{2 a}\right)} $$
    Solution

  • Question 5
    1 / -0
    $$\lim _{ x\rightarrow 0 }{ \frac { \sin { [\cos { x } ] }  }{ 1+[\cos { x } ] }  } $$ is (where [] is G.I.F)
    Solution

  • Question 6
    1 / -0
    $$\mathop {\lim }\limits_{x \to \pi /2} \left[ {x\tan x - \left( {\frac{\pi }{2}} \right)\sec x} \right]$$ is equal to
    Solution

  • Question 7
    1 / -0
    $$\underset { x\rightarrow a }{ lim } \left( \sin { \dfrac { x-a }{ 2 } \tan { \dfrac { \pi x }{ 2a }  }  }  \right)$$
    Solution

  • Question 8
    1 / -0
    The value of $$\mathop {{\text{Limit}}}\limits_{x \to 0} \frac{{\cos \left( {\sin x} \right) - \cos x}}{{{x^4}}}$$ is equal to 
    Solution

  • Question 9
    1 / -0
    $$\displaystyle \lim _{ x\rightarrow 0 }{ \left[ \dfrac { 100\tan { x } .\sin { x }  }{ { x }^{ 2 } }  \right]  } $$ where $$[.]$$ represents greatest integer function is 
    Solution

  • Question 10
    1 / -0
    The value of  $$\lim _ { x \rightarrow \dfrac { 1 } { 2 } } \dfrac { 2 \sin ^ { - 1 } x - \dfrac { \pi } { 2 } } { 1 - 2 x ^ { 2 } }$$  is equal to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now