Self Studies
Selfstudy
Selfstudy

Limits and Derivatives Test - 58

Result Self Studies

Limits and Derivatives Test - 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\displaystyle x^{cos\,y} + y^{cox\,x} = 5 $$ , Then 
    Solution

  • Question 2
    1 / -0
    Value of $$L=\displaystyle\lim_{n\rightarrow \infty n}\dfrac{1}{4}\left[1.\left(\displaystyle\sum_{k=1}^{n}k\right)+2.\left(\sum_{k=1}^{n-1}k\right)+3.\left(\sum_{k=1}^{n-2}k\right)+...+n.1\right]$$ is
    Solution

  • Question 3
    1 / -0
    Solution of the equation $$ \dfrac {dy }{dx}  + \dfrac {1}{x} \tan y = \dfrac {1}{x^2}  \tan y \sin y$$ is 
    Solution

  • Question 4
    1 / -0
    $$\displaystyle \lim _{x \rightarrow 1}\left(\dfrac{x^{4}+x^{2}+x+1}{x^{2}-x+1}\right)^{\dfrac{1-\cos (x+1)}{(x+1)^{2}}} $$ is equal to:
    Solution

  • Question 5
    1 / -0
    The value of $$\displaystyle \lim_{n\infty}\dfrac{1}{n^2}\left\{ sin^3\dfrac{\pi}{4n}+2sin^3\dfrac{2\pi}{4n} + ... + nsin^3\dfrac{n\pi}{4n}\right\}$$ is equal to 
    Solution

  • Question 6
    1 / -0
    If $$ \displaystyle \lim _{x \rightarrow 0} \dfrac{x^{n}-\sin x^{n}}{x-\sin ^{n} x} $$ is non-zero finite, then $$ n $$ must be equal
    Solution

  • Question 7
    1 / -0
    If $$ L=\displaystyle \lim _{x \rightarrow 0} \dfrac{\sin x+a e^{x}+b e^{-x}+c \ln (1+x)}{x^{3}}=\infty $$

    Equation $$ a x^{2}+b x+c=0 $$ has
    Solution

  • Question 8
    1 / -0
    $$\displaystyle \lim _{x \rightarrow \infty} \dfrac{2+2 x+\sin 2 x}{(2 x+\sin 2 x) e^{\sin x}} $$ is equal to
    Solution

  • Question 9
    1 / -0
    $$\displaystyle  \lim _{x \rightarrow \pi / 2} \dfrac{\sin (x \cos x)}{\cos (x \sin x)} $$ is equal to
    Solution

  • Question 10
    1 / -0
    The value of $$ \displaystyle \lim _{x \rightarrow 0} \dfrac{\sqrt{\dfrac{1}{2}(1-\cos 2 x)}}{x} $$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now