Self Studies

Limits and Derivatives Test - 9

Result Self Studies

Limits and Derivatives Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    \(\lim\limits_{x \to \pi} \frac{sin x}{x - \pi} \) is

    Solution

    Given, \(\lim\limits_{x \to \pi} \frac{sin x}{x - \pi} = \lim\limits_{x \to \pi} \frac{sin(\pi - x)}{-(\pi - x)}\)

    = -1 \([\because \lim\limits_{x \to 0} \frac{sin x}{x} = 1 \; and \;\pi - x\, as\, x \rightarrow \pi]\)

  • Question 2
    1 / -0

    \(\lim\limits_{x \to 0} \frac{x^2 cos x}{1-cosx}\) is

    Solution

    Given, \(\lim\limits_{x \to 0} \frac{x^2 cos x}{1-cosx}\)

    \(\lim\limits_{x \to 0} \frac{x^2 cos x}{2 sin^2 \frac{x}{2}}[\because 1 - cos x = 2 sin^2 \frac{x}{2}]\)

    \(= \lim\limits_{x \to 0} \frac{\frac{x^2}{4} \times 4 cos x}{2sin^2 \frac{x}{2}} = \lim\limits_{x \to 0 } \frac{(\frac{x}{2})^2.2 cosx}{sin^2 \frac{x}{2}}\)

    \(\lim\limits_{\frac{x}{2} \to 0} (\frac{\frac{x}{2}}{sin \frac{x}{2}})^2.2cos x\)

    = 2cos 0 = 2 × 1 = 2 \([\because \lim\limits_{x \to 0} \frac{x}{sin x} = 1]\)

  • Question 3
    1 / -0

    \(\lim\limits_{x \to 0} \frac{(1 + x)^n - 1}{x}\) is

    Solution

    Given, \(\lim\limits_{x \to 0} \frac{(1 + x)^n - 1}{x}\) = \(\lim\limits_{x \to 0} \frac{(1 + x)^n - (1)^n}{(1 +x) - (1)}\)

     \(= \lim\limits_{1+x \to 1} \frac{(1 + x)^n - (1)^n}{(1 + x) - (1)} = n(1)^{n-1}\) 

    \(= n[\lim\limits_{x \to a} \frac{x^n - a^n}{x-a} = na^{n-1}]\)

  • Question 4
    1 / -0

    \(\lim \limits_{x \to 1} \frac{x^m - 1}{x^n - 1}\) is

    Solution

    Given \(\lim \limits_{x \to 1} \frac{x^m - 1}{x^n - 1}\) = \(\lim\limits_{x \to 1} \frac{\frac{x^m - (1)^m}{x-1}}{\frac{x^n - (1)^n}{x-1}}\)

    \(= \frac{m(1)^{m-1}}{n(1)^{n-1}} = \frac{m}{n} [\because \lim\limits_{x \to a} \frac{x^n - a^n}{x-a} = na^{n-1}]\)

  • Question 5
    1 / -0

    \(\lim\limits_{\theta \to 0} \frac{1 - cos 4 \theta}{1 - cos 6 \theta} \) is

    Solution

    Given \(\lim\limits_{\theta \to 0} \frac{1 - cos 4 \theta}{1 - cos 6 \theta} \) 

    \(\lim\limits_{\theta \to 0} \frac{2sin^2 2 \theta}{2 sin^2 3 \theta} [\because 1 - cos \theta = 2sin^2 \frac{\theta}{2}]\)

    \(\lim\limits_{\theta \to 0} \frac{sin^2 2 \theta}{sin^23 \theta} = \lim\limits_{\theta \to 0}[\frac{sin 2 \theta}{sin 3 \theta}]^2\)

    \(\lim\limits_{\theta \to 0 \\ 2\theta \to 0 \\ 3\theta \to 0}[\frac{\frac{sin 2\theta}{2 \theta} \times 2 \theta}{\frac{sin 3 \theta}{3 \theta} \times 3 \theta}]^2\)

    \([\frac{2 \theta}{3\theta}]^2 = (\frac{2}{3})^2 = \frac{4}{9}\)

  • Question 6
    1 / -0

    \(\lim\limits_{x \to 0} \frac{cosec x - cot x}{x}\) is

    Solution

    Given \(\lim\limits_{x \to 0} \frac{cosec x - cot x}{x}\) = \(\lim \limits_{x \to 0} \frac{\frac{1}{sin x} - \frac{cos x}{sin x}}{x}\)

    \(\lim\limits_{x \to 0} \frac{1 -cos x}{x sin x} = \frac{2 sin^2 \frac{x}{2}}{x.2 sin \frac{x}{2} cos \frac{x}{2}}\)

    [\(\because\) sin 2x = 2 sin x cos x]

    \(= \lim\limits_{x \to 0} \frac{sin \frac{x}{2}}{x cos \frac{x}{2}} = \lim\limits_{x \to 0} \frac{tan \frac{x}{2}}{x}\)

    \( \lim\limits_{x \to 0} \frac{tan \frac{x}{2}}{2 \times \frac{x}{2}}\)

    \(= \frac{1}{2} \times 1 = \frac{1}{2} [\because \lim\limits_{x \to 0} \frac{tan x}{x} = 1]\)

  • Question 7
    1 / -0

    \( \lim\limits_{x \to 0} \frac{sin x}{\sqrt{x+1} - \sqrt{1-x}}\) is

    Solution

    Given \( \lim\limits_{x \to 0} \frac{sin x}{\sqrt{x+1} - \sqrt{1-x}}\)

    \(\lim\limits_{x \to 0} \frac{sin x[\sqrt{x +1} + \sqrt{1 - x}]}{(\sqrt{x + 1} - \sqrt{1 - x})(\sqrt{x + 1} + \sqrt{1 -x})}\)

    \(\lim\limits_{x \to 0} \frac{sin x[\sqrt{x +1} + \sqrt{1 - x}]}{x +1 - 1 +x}\)

    \(\lim\limits_{x \to 0} \frac{sin x[\sqrt{x +1} + \sqrt{1 - x}]}{2x}\)

    \(\frac{1}{2}.\lim\limits_{x \to 0} \frac{sin x}{x}[\sqrt{x + 1} + \sqrt {1 - x}]\)

    Taking limit, we get

    \(\frac{1}{2} \times 1 \times [\sqrt{0 + 1} + \sqrt{1 - 0}] \)

    \(\frac{1}{2} \times 1 \times 2 = 1\)

  • Question 8
    1 / -0

    \(\lim\limits_{x \to \frac{\pi}{4}} \frac{sec^2 x - 2}{tan x - 1}\) is

    Solution

    Given, \(\lim\limits_{x \to \frac{\pi}{4}} \frac{sec^2 x - 2}{tan x - 1}\) 

    \(\lim\limits_{x \to \frac{\pi}{4}} \frac{1 + tan^2 x - 2}{tan x - 1}\)

    \(\lim\limits_{x \to \frac{\pi}{4}} \frac{tan^2 x - 1}{tan x - 1}\)

    \(\lim\limits_{x \to \frac{\pi}{4}} \frac{(tan x + 1)(tan x - 1)}{(tan x - 1)}\)

    \(\lim\limits_{x \to \frac{\pi}{4}}\) (tan x + 1) = tan \(\frac{\pi}{4}\) + 1

    = 1 + 1 = 2

  • Question 9
    1 / -0

    \(\lim\limits_{x \to 1} \frac{(\sqrt x - 1)(2x -3)}{2x^2 + x -3}\) is

    Solution

    Given, \(\lim\limits_{x \to 1} \frac{(\sqrt x - 1)(2x -3)}{2x^2 + 3x -2x -3}\)

    \(\lim\limits_{x \to 1} \frac{(\sqrt x - 1)(2x -3)}{x(2x + 3) - 1(2x +3)}\)

    \(\lim\limits_{x \to 1} \frac{(\sqrt x - 1)(2x -3)}{(x -1)(2x + 3)}\)

    \(\lim\limits_{x \to 1} \frac{(\sqrt x - 1)(\sqrt x + 1)(2x -3)}{(x-1)(\sqrt x + 1)(2x+3)}\)

    \(\lim\limits_{x \to 1} \frac{(x - 1)(2x -3)}{(x-1)(\sqrt x + 1)(2x+3)}\)

    \(\lim\limits_{x \to 1} \frac{2x -3}{(\sqrt x + 1)(2x+3)}\)

    Taking limit, we have

    \(= \frac{2(1) -3}{(\sqrt 1 + 1)(2 \times 1 + 3)} = \frac{-1}{2 \times 5} = \frac{-1}{10}\)

  • Question 10
    1 / -0

    If f(x) = \( \begin{cases} \frac{sin[x]}{[x]}, & \quad [x] \neq 0 \\ 0, & \quad [x] = 0 \end{cases} \), where [.] denotes the greatest integer function, then \(\lim\limits_{x \to 0}\) f(x) is equal to

    Solution

    Given, f(x) = \( \begin{cases} \frac{sin[x]}{[x]}, & \quad [x] \neq 0 \\ 0, & \quad [x] = 0 \end{cases} \)

    LHL = \(\lim\limits_{x \to 0^-} \frac{sin[x]}{[x]} = \lim\limits_{h \to 0} \frac{sin[0 - h]}{[0 - h]} \)

    \(= \lim\limits_{h \to 0} \frac{sin(-1)}{-1} = \frac{-sin(1)}{-1}=sin(1)\)

    \(\because \lim\limits_{x \to 0^-} {[x]}=\lim\limits_{h \to 0} {[0+h]}=\lim\limits_{h \to 0}0=0\)

    \(\therefore \) \(f(x)=0 \, when \, limit \,x \,tends\, to \,0\)

    \(\therefore \)RHL = \(\lim\limits_{x \to 0^+} f(x)=\lim\limits_{x \to 0^+}0=0.\)

    LHL ≠ RHL

    So, the limit does not exist.

  • Question 11
    1 / -0

    \(\lim\limits_{x \to 0} \frac{|sin x|}{x} \) is

    Solution

    Given, \(\lim\limits_{x \to 0} \frac{|sin x|}{x} \) 

    LHL = \(\lim\limits_{x \to 0} \frac{-sin x}{x} = -1 [\therefore \lim\limits_{x \to 0} \frac{sin x}{x} = 1]\)

    RHL = \(\lim\limits_{x \to 0} \frac{sin x}{x} = 1\)

    LHL ≠ RHL, so the limit does not exist.

  • Question 12
    1 / -0

    Let \(f(x) = \begin{cases} x^2 - 1, & \quad 0 < x < 2 \\ 2x + 3, & \quad 2 \leq x < 3 \end{cases}\), the quadratic equation whose roots are \(\lim\limits_{x \to 2^-}\) f(x) and \(\lim\limits_{x \to 2^+} \) f(x) is

    Solution

    Given \(f(x) = \begin{cases} x^2 - 1, & \quad 0 < x < 2 \\ 2x + 3, & \quad 2 \leq x < 3 \end{cases}\)

    \(\therefore \lim\limits_{x \to 2^-} f(x) = \lim\limits_{x \to 2^-}(x^2 - 1)\)

    \(\lim\limits_{h \to 0}[(2 - h)^2 - 1] = \lim\limits_{h \to 0}(4 + h^2 - 4h - 1)\)

    \(\lim\limits_{h \to 0}(h^2 - 4h + 3) = 3\)

    and \(\lim\limits_{x \to 2^+}f(x) = \lim\limits_{x \to 2^+}(2x + 3)\)

    \(\lim\limits_{h \to 0}\)[2(2 + h) + 3] = 7

    Therefore, the quadratic equation whose roots are 3 and 7 is \(x ^2\) – (3 + 7)x + 3×7 = 0 i.e., \(x ^2\) – 10x + 21 = 0.

  • Question 13
    1 / -0

    \(\lim\limits_{x \to 0} \frac{tan 2x - x}{3x - sin x}\) is

    Solution

    Given, \(\lim\limits_{x \to 0} \frac{tan 2x - x}{3x - sin x}\) 

    \(\lim\limits_{x \to 0} \frac{x[\frac{tan 2x}{x} - 1]}{x[3 - \frac{sin x}{x}]}\)

    \(\lim\limits_{x \to 0 \\ \therefore 2x \to 0} \frac{\frac{tan2x}{2x} \times 2 - 1}{3 - \frac{sin x}{x}} = \frac{1.2 - 1}{3 - 1}\)

    \(\frac{2-1}{2} = \frac{1}{2}\)

  • Question 14
    1 / -0

    Let f (x) = x – [x]; ∈ R, then f' \(\frac{1}{2}\) is

    Solution

    Given f(x) = x – [x]

    we have to first check for differentiability of f(x) at x = \(\frac{1}{2}\)

    \(\therefore Lf' (\frac{1}{2})\) = LHD = \(\lim\limits_{h \to 0} \frac{f[\frac{1}{2} - h] - f [\frac{1}{2}]}{-h}\)

    \(\lim\limits_{h \to 0} \frac{(\frac{1}{2} -h) - [\frac{1}{2} - h] - \frac{1}{2} + [\frac{1}{2}]}{-h}\)

    \(\lim\limits_{h \to 0} \frac{\frac{1}{2} - h - 0 - \frac{1}{2} + 0}{-h} = \frac{-h}{-h} = 1\)

    Now, Rf'\((\frac{1}{2}) = RHD = \lim\limits_{h \to 0} \frac{f(\frac{1}{2} + h) - f(\frac{1}{2})}{h}\)

    \(\lim\limits_{h \to 0} \frac{(\frac{1}{2} + h) - [\frac{1}{2} + h] - \frac{1}{2} + [\frac{1}{2}]}{h}\)

    \(\lim\limits_{h \to 0} \frac{\frac{1}{2} +h - 0 - \frac{1}{2} + 0}{h} = \frac{h}{h} = 1\)

    Since LHD = RHD

    \(\therefore f'(\frac{1}{2}) = 1\)

  • Question 15
    1 / -0

    If \(y = \sqrt x + \frac{1}{\sqrt x}\), then \(\frac{dy}{dx}\) at x = 1 is

    Solution

    Given that \(y = \sqrt x + \frac{1}{\sqrt x}\)

    \(\frac{dy}{dx} = \frac{1}{2\sqrt x} - \frac{1}{2x^{\frac{3}{2}}}\)

    \((\frac{dy}{dx})_{at\, x = 1} = \frac{1}{2} - \frac{1}{2} = 0\)

  • Question 16
    1 / -0

    If f(x) = \(\frac{x - 4}{2 \sqrt x}\), then f ′(1) is

    Solution

    Given that f(x) = \(\frac{x - 4}{2 \sqrt x}\)

    \(\therefore\) f'(x) = \(\frac{1}{2}[\frac{\sqrt x.1 - (x - 4) . \frac{1}{2\sqrt x}}{x}]\)

    \(\frac{1}{2}[\frac{2x - x + 4}{2\sqrt x.x}] = \frac{1}{2}[\frac{x+4}{2(x)^{\frac{3}{2}}}]\)

    ∴ f’(x) at x = 1 = \(\frac{1}{2}[\frac{1+4}{2\times1}] = \frac{5}{4}\)

  • Question 17
    1 / -0

    If \(y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\), then \(\frac{dy}{dx}\) is

    Solution

    Given, \(y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\) ⇒ \(y = \frac{x^2 + 1}{x^2 - 1}\)

    \(\therefore \frac{dy}{dx} = \frac{(x^2 - 1).2x - (x^2 + 1).2x}{(x^2 - 1)^2}\)

    \(= \frac{2x(x^2 - 1 - x^2 - 1)}{(x^2 - 1)^2} = \frac{2x(-2)}{(x^2 - 1)^2}\)

    \(\frac{-4x}{(x^2 - 1)^2}\)

  • Question 18
    1 / -0

    If \(y = \frac{sin x + cosx}{sinx - cosx}\), then \(\frac{dy}{dx}\) at x = 0 is

    Solution

    Given \(y = \frac{sin x + cosx}{sinx - cosx}\)

    \(\frac{dy}{dx} = \frac{(sin x - cos x)(cos x - sin x) - \\ (sin x + cos x)(cos x + sin x)}{(sin x - cos x)^2}\)

    \(= \frac{-(sin x - cos x)^2 - (sin x + cos x)^2}{(sin x - cos x)^2}\)

     \(= \frac{-[sin^2 x + cos^2x - 2sin xcosx \\ + sin^2x + cos^2x + 2sinx cos x]}{(sin x - cosx)^2}\)

    \(= \frac{-2}{(sin x - cos x)^2}\)

    \(\therefore (\frac{dy}{dx})_{at\, x = 0} = \frac{-2}{(sin 0 - cos 0)^2} \)

    \(\frac{-2}{(-1)^2} = -2\)

  • Question 19
    1 / -0

    If \(y = \frac{sin(x + 9)}{cos x}\), then \(\frac{dy}{dx} \) at x = 0 is

    Solution

    Given \(y = \frac{sin(x + 9)}{cos x}\)

    \(\frac{dy}{dx} = \frac{cosx.cos(x + 9) - sin(x + 9)(-sin x)}{cos^2x}\)

    \(= \frac{cosxcos(x + 9)+sinxsin(x+9)}{cos^2x}\)

    \(\frac{cos(x + 9 - x)}{cos^2x} = \frac{cos 9}{cos^2 x}\)

    \(\therefore (\frac{dy}{dx})_{at\, x\, =\, 0} = \frac{cos9}{cos^20} = \frac{cos9}{(1)^2}\)

    = cos 9

  • Question 20
    1 / -0

    If f(x) = \(1 + x + \frac{x^2}{2} + \dots + \frac{x^{100}}{100}\), then f ′(1) is equal to

    Solution

    Given f(x) = \(1 + x + \frac{x^2}{2} + \dots + \frac{x^{100}}{100}\)

    f’(x) = \(1 + \frac{2x}{2} + \dots + \frac{100x^{99}}{100}\)

    ∴ f’(1) = 1 + 1 + 1 +…+ 1 (100 times) = 100

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now