Given ,
$$A:\cos\alpha+\cos\beta+\cos\gamma=0$$..........(1)
$$A:\sin\alpha+\sin\beta+\sin\gamma=0$$..........(2)
Now,
on squaring both sides of equation (1) and (2)
we get,
$$(\cos\alpha+\cos\beta+\cos\gamma)^2=0$$........(3)
and
$$(\sin\alpha+\sin\beta+\sin\gamma)^2=0$$..........(4)
on adding equation (3) and (4) we get,
$$\cos^2\alpha+\cos^2\beta+\cos^2\gamma+2(\cos\alpha\cos\beta+\cos\beta\cos\gamma+\cos\gamma\cos\alpha)+$$
$$\sin^2\alpha+\sin^2\beta+\sin^2\gamma+2(\sin\alpha\sin\beta+\sin\beta\sin\gamma+\sin\gamma\\sin\alpha)=0$$
$$\therefore (a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac$$
$$\Rightarrow (\cos^2\alpha+\sin^2\alpha)+(\cos^2\beta+\sin^2\beta)+(\cos^2\gamma+\sin^2\gamma)+2[(\cos\alpha\cos\beta+\sin\alpha\sin\beta)+$$
$$(\cos\beta\cos\gamma+\sin\beta\sin\gamma)+(\cos\gamma\cos\alpha+\sin\gamma\sin\alpha)]=0$$
$$\Rightarrow 1+1+1+2[\cos(\alpha-\beta)+\cos(\beta-\gamma)+\cos(\gamma-\alpha)]=0$$
$$\because$$ we know that $$\cos(\alpha-\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta$$
Also, $$\cos^2x+\sin^2x=1$$
$$\Rightarrow 3+2[\cos(\alpha-\beta)+\cos(\beta-\gamma)+\cos(\gamma-\alpha)]=0$$
$$\Rightarrow 2[\cos(\alpha-\beta)+\cos(\beta-\gamma)+\cos(\gamma-\alpha)]=-3$$
$$\Rightarrow \cos(\alpha-\beta)+\cos(\beta-\gamma)+\cos(\gamma-\alpha)=\dfrac{-3}{2}$$
Thus, A and B both statement are true.