Self Studies

Mathematical Reasoning Test - 33

Result Self Studies

Mathematical Reasoning Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    While simplifying $$\sqrt { \frac { 1-cosx }{ 1+cosx }  } $$, two students got the following two answers A & B.
    A)  cosec x - cot x  (B)   $$\frac { 1 }{ cosecx+cotx } $$ What can you say about answers ?
    Solution

  • Question 2
    1 / -0
    Which of the following proportional is a tautology? 
    Solution

  • Question 3
    1 / -0
    The logically equivalent proportion of $$p \leftrightarrow q$$ is
    Solution

  • Question 4
    1 / -0
    If  p, q, r are statements with truth values false, true and false respectively.  then truth value of $$(\sim pv \sim q) v r$$  is 
    Solution

  • Question 5
    1 / -0
    The converse of the contra positive of $$
    \sim p \rightarrow q
     $$ is ........(1)

  • Question 6
    1 / -0
    The contrapositive of $$( p \wedge q ) \Rightarrow r$$ is
    Solution

  • Question 7
    1 / -0
    Consider the statement :$$"P\left( n \right) :{ n }^{ 2 }-n+41$$ is prime." Then which one of the following is true?
    Solution

  • Question 8
    1 / -0
    Two pairs of statement are:
    p: If a quadrilateral is a rectangle, then its opposite sides are equal.
    q: If opposite sides of a quadrilateral are equal, then the quadrilateral is a rectangle.
    The combined statement of these pairs using If and only if is:
    Solution

  • Question 9
    1 / -0
    Let A and B denote the statements
    A:$$\cos { \alpha  } +\cos { \beta  } +\cos { \gamma  } =0$$ & B:$$\sin { \alpha  } +\sin { \beta  } +\sin { \gamma  } =0$$
    If $$\cos { (\beta -\gamma ) } +\cos { (\gamma -\alpha ) } +\cos { (\alpha -\beta ) } =-\frac { 3 }{ 2 } $$ then
    Solution
    Given ,

    $$A:\cos\alpha+\cos\beta+\cos\gamma=0$$..........(1)

    $$A:\sin\alpha+\sin\beta+\sin\gamma=0$$..........(2)

    Now,

    on squaring both sides of equation (1) and (2) 

    we get,

    $$(\cos\alpha+\cos\beta+\cos\gamma)^2=0$$........(3)
    and

    $$(\sin\alpha+\sin\beta+\sin\gamma)^2=0$$..........(4)
    on adding equation (3) and (4) we get,

    $$\cos^2\alpha+\cos^2\beta+\cos^2\gamma+2(\cos\alpha\cos\beta+\cos\beta\cos\gamma+\cos\gamma\cos\alpha)+$$
    $$\sin^2\alpha+\sin^2\beta+\sin^2\gamma+2(\sin\alpha\sin\beta+\sin\beta\sin\gamma+\sin\gamma\\sin\alpha)=0$$

    $$\therefore (a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac$$

    $$\Rightarrow (\cos^2\alpha+\sin^2\alpha)+(\cos^2\beta+\sin^2\beta)+(\cos^2\gamma+\sin^2\gamma)+2[(\cos\alpha\cos\beta+\sin\alpha\sin\beta)+$$
    $$(\cos\beta\cos\gamma+\sin\beta\sin\gamma)+(\cos\gamma\cos\alpha+\sin\gamma\sin\alpha)]=0$$

    $$\Rightarrow 1+1+1+2[\cos(\alpha-\beta)+\cos(\beta-\gamma)+\cos(\gamma-\alpha)]=0$$

    $$\because$$ we know that $$\cos(\alpha-\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta$$
    Also, $$\cos^2x+\sin^2x=1$$

    $$\Rightarrow 3+2[\cos(\alpha-\beta)+\cos(\beta-\gamma)+\cos(\gamma-\alpha)]=0$$

    $$\Rightarrow 2[\cos(\alpha-\beta)+\cos(\beta-\gamma)+\cos(\gamma-\alpha)]=-3$$

    $$\Rightarrow \cos(\alpha-\beta)+\cos(\beta-\gamma)+\cos(\gamma-\alpha)=\dfrac{-3}{2}$$

    Thus, A and B both statement are true.
  • Question 10
    1 / -0
    If $$x = 5$$ and $$y = - 2$$ then $$x - 2 y = 9 .$$ The contrapositive of this statement is
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now