Self Studies

Statistics Test - 22

Result Self Studies

Statistics Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The mean and standard deviation of random variable $$X$$ are $$10$$ and $$5$$ respectively, then $$E\left (\dfrac {X - 15}{5}\right )^{2} =$$ _______.
    Solution
    Mean $$=10$$ and standard deviation $$=5$$
    So, variance$$(v) = 5^{2} = 25$$
    $$\therefore E (x)^{2} = 25 + 10^{2} = 125$$
    $$\therefore E\left (\dfrac {x^{2} + 225 - 30x}{25}\right ) = \dfrac {1}{25} (E(x)^{2} + 225 - 30E(x))=2$$
  • Question 2
    1 / -0
    The mean of $$\displaystyle\frac{1}{3},\frac{3}{4},\frac{5}{6},\frac{1}{2}$$ and $$\displaystyle\frac{7}{12}$$ is ____________.
    Solution
    Given data is $$\dfrac{1}{3},\dfrac{3}{4},\dfrac{5}{6},\dfrac{1}{2},\dfrac{7}{12}$$

    Mean $$=$$ Sum of observations $$\div$$ Total number of observations

    Sum of observations$$=$$ $$\dfrac{1}{3}+\dfrac{3}{4}+\dfrac{5}{6}+\dfrac{1}{2}+\dfrac{7}{12}$$

       Mean $$=$$$$\dfrac{\dfrac{4+9+10+6+7}{12}}{5}$$

               $$= \dfrac{3}{5}$$
  • Question 3
    1 / -0
    The mean and standard deviation of a random variable $$x$$ is given by $$5$$ and $$3$$ respectively. The standard deviation of $$2-3x$$ is _____
    Solution
    $$\sigma(2-3x)=\sigma(-3x)=|-3|\sigma(x)=3\times 3=9$$
  • Question 4
    1 / -0
    The arithmetic mean of the observations $$10,8,5,a,b$$ is $$6$$ and their variance is $$6.8$$, then $$ab=$$
    Solution
    $$\Rightarrow$$  Given observations are $$a,\,b,\,8,\,5,\,10$$
    According to the question,
    $$\Rightarrow$$  $$6.8=\dfrac{(6-a)^2+(6-b)^2+(6-8)^2+(6-5)^2+(6-10)^2}{5}$$
    $$\Rightarrow$$  $$6.8\times 5=(6-a)^2+(6-b)^2+4+1+16$$
    $$\Rightarrow$$  $$(6-a)^2+(6-b)^2=34-21$$
    $$\Rightarrow$$  $$(6-a)^2+(6-b)^2=13$$
    $$\Rightarrow$$  $$(6-a)^2+(6-b)^2=9+4$$
    $$\Rightarrow$$  $$(6-a)^2+(6-b)^2=(3)^2+(2)^2$$
    $$\Rightarrow$$  $$(6-a)^2=(3)^2$$ and $$(6-b)^2=(2)^2$$
    $$\Rightarrow$$  $$6-a=3$$     and   $$6-b=2$$
    $$\therefore$$  $$a=3$$ and $$b=4$$
    $$\Rightarrow$$  $$ab=(3)(4)=12$$
  • Question 5
    1 / -0
    If the standard deviation of $$0,1,2,3......,9$$ is $$K$$, then the standard deviation of $$10,11,12,13,........19$$ is
    Solution
    As the standard deviation only depend upon total no of values and the difference between mean and each value,
    Both sequence have same standard deviation.
    Note:
    If $$1^{st}$$ sequence is $$x_i$$ and $$2^{nd}$$ sequence is $$y_i$$,
    $$y_i=10+x_i\Rightarrow \overline y=10+\overline x$$
    So, $$\overline y-y_i=\overline x-x_i$$

    ie, Option A is correct answer.
  • Question 6
    1 / -0
    The mean age of $$25$$ students in a class is $$12$$. If the teacher's age is included, the mean age increases by $$1$$. Then teacher's age (in years) is:
    Solution
    Sum of $$25$$ students ages be $$x$$

    $$\Rightarrow $$ Mean $$=\dfrac {x}{25}=12\Rightarrow x=300$$           equation - (1)

    Let the teacher's age be $$y$$

    $$\Rightarrow $$ New mean $$=\dfrac {x+y} {26}=13$$

    $$\Rightarrow 300+y=338$$

    $$\Rightarrow y=38$$

    Teacher's age $$=y=38$$
  • Question 7
    1 / -0
    If $$\sum\limits_{i = 1}^{18} {({x_i} - 8) = 9} $$ and $$\sum\limits_{i = 1}^{18} {{{({x_i} - 8)}^2} = 45} $$, then standard deviation of $${x_1},{x_2},...,{x_{18}}$$ is
    Solution

    Given: $$\displaystyle\sum\limits_{i = 1}^{18} {\left( {x_i - 8} \right) = 9} $$

    $$\displaystyle\sum\limits_{i = 1}^{18} {{{\left( {x_i - 8} \right)}^2} = 45} $$

    Let $$X$$ be a random variable taking values $${x_1},........{x_{18.}}$$

    Then $$X-8$$ has the values $${x_1} - 8,....,{x_{18}} - 8.$$

    Now, $$E\left( {X - 8} \right) =\displaystyle {{\displaystyle\sum\limits_{i = 1}^{18} {\left( {x_i - 8} \right)} } \over {18}}$$

    $$ = \displaystyle{9 \over {18}} = {1 \over 2}$$

    And $$E\left[ {{{\left( {X - 8} \right)}^2}} \right] = \displaystyle{{\sum\limits_{i = 1}^{18} {{{\left( {x_i - 8} \right)}^2}} } \over {18}}$$

    $$ =\displaystyle {{45} \over {18}} = {5 \over 2}$$

    Thus, $$Var\left( {X - 8} \right) = E\left[ {{{\left( {X - 8} \right)}^2}} \right] - \left[ {E{{\left( {X - 8} \right)}}} \right]^2$$

    $$ =\displaystyle {5 \over 2} - {\left( {{1 \over 2}} \right)^2}$$

    $$ = \displaystyle{5 \over 2} - {1 \over 4}$$

    $$ = \displaystyle{9 \over 4}$$

    We know $$Var\left( {1.X - 8} \right) = {1^2}Var\left( X \right)$$, thus,

    $$Var\left( X \right) = \displaystyle{9 \over 4}$$

    Standard deviation of $$X = \sqrt {Var\left( X \right)} $$

    $$ = \displaystyle\sqrt {{9 \over 4}}  = {3 \over 2}$$

  • Question 8
    1 / -0
    Solve:
    $$\log_5 \dfrac{(25)^4}{\sqrt{625}}$$
    Solution
    We have,
    $$\log_5 \dfrac{(25)^4}{\sqrt{625}}$$

    $$\Rightarrow \log_5 \dfrac{(25)^4}{(25)}$$

    $$\Rightarrow \log_5 (25)^3$$

    $$\Rightarrow \log_5 5^6$$

    $$\Rightarrow 6\log_5 5$$                  $$\therefore \log m^n=n\log m$$

    $$\Rightarrow 6\times 1$$                     $$\therefore \log_a a=1$$

    $$\Rightarrow 6$$

    Hence, this is the answer.
  • Question 9
    1 / -0
    The variance of the data $$6,\ 8,\ 10,\ 12,\ 14,\ 16,\ 18,\ 20,\ 22,\ 24$$ is
    Solution
    $$\overline{x}=\dfrac{6+8+10+12+14+16+18+20+22+24}{10}=\dfrac{150}{10}=15$$
    $$Variance=\dfrac{\sum(x-\overline{x})^2}{10}$$

    $$=\dfrac{(6-15)^2+(8-15)^2+(10-15)^2+(12-15)^2+(14-15)^2+(16-15)^2+(18-15)^2+(20-15)^2+(22-15)^2+(24-15)^2}{10}$$

    $$=\dfrac{(-9)^2+(-7)^2+(-5)^2+(-3)^2+(-1)^2+(1)^2+(3)^2+(5)^2+(7)^2+(9)^2}{10}$$

    $$=\dfrac{81+49+25+9+1+1+9+25+49+81}{10}$$

    $$=\dfrac{330}{10}$$
    $$=33$$

    $$\therefore$$  Variance $$=33$$
  • Question 10
    1 / -0
    Median is based on the...
    Solution
    Median, by definition is the term that 
    occurs in the middle. Hence it depends upon 
    the middle 50% of the given items.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now