Self Studies

Statistics Test - 32

Result Self Studies

Statistics Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The mean of a distribution is $$14$$ and standard deviation is $$5$$. What is the value of the coefficient of variation?
    Solution
    Coefficient of variation is given by $$CV = \dfrac{SD}{Mean}\times 100 $$
    $$\Rightarrow \dfrac{5}{14}\times 100 = 35.7\%$$
  • Question 2
    1 / -0
    Find variance for following data:
    Class$$0-10$$$$10-20$$$$20-30$$$$30-40$$$$40-50$$$$50-60$$$$60-70$$
    frequency$$6$$$$5$$$$8$$$$15$$$$7$$$$6$$$$3$$
    Solution
    $$\bar { x } =\cfrac { \sum { Fx }  }{ \sum { F }  } =\cfrac{1670}{50}=33.4$$
    $${\sigma}^{2}=\cfrac { \sum { F{ ( }x-\bar { x } )^{ 2 } }  }{ \sum { F }  } =\cfrac{14025.6}{50}=280.51$$
    $$\sigma=16.75$$

  • Question 3
    1 / -0
    The degree to which numerical data tend to spread about value is called
    Solution
    Variance gives the degree to which the numerical data tend to spread about the value.

    Variance is given by $$\dfrac{\sum x^2}{n}-(\dfrac{\sum x}{n})^2$$
  • Question 4
    1 / -0
    The SD of following:
    Age$$20-25$$$$25-30$$$$30-35$$$$35-40$$$$40-45$$$$45-50$$
    Number of persons$$170$$$$110$$$$80$$$$45$$$$40$$$$35$$
    Solution
    $$\bar { x } =\cfrac { \sum { Fx }  }{ \sum { F }  }=\cfrac{14500}{480}=30.2 $$.
    $${\sigma}^{2}=\cfrac { \sum { F{ ( }x-\bar { x } )^{ 2 } }  }{ \sum { F }  }=\cfrac{40983.25}{480}=85.38 $$
    $$\sigma=9.24$$

  • Question 5
    1 / -0
    If $$x $$ is increased by $$k$$ then $$\sigma$$  changes to
    Solution
    By the properties of standard deviation,
    $$\sigma(x+k)=\sigma(x)$$ 
    Therefore, by the addition of the constant, the standard deviation remains unchanged.
  • Question 6
    1 / -0
    Find variance for following data:
    Marks$$0-4$$$$5-9$$$$10-14$$$$15-19$$$$20-24$$$$25-29$$$$30-34$$$$35-39$$
    Frquency$$2$$$$5$$$$7$$$$13$$$$21$$$$16$$$$8$$$$3$$
    Solution
    $$\bar { x } =\cfrac { \sum { Fx }  }{ \sum { F }  } =\cfrac{1605}{75}=21.4$$
    $${\sigma}^{2}=\cfrac { \sum { F{ ( }x-\bar { x } )^{ 2 } }  }{ \sum { F }  }=\cfrac{4798}{75}=63.97\approx 64$$

  • Question 7
    1 / -0
    The variance and SD of the following is
    $$x$$$$4.5$$$$14.5$$$$24.5$$$$34.5$$$$44.5$$$$54.5$$$$64.5$$
    $$f$$$$1$$$$5$$$$12$$$$22$$$$17$$$$9$$$$4$$
     
    Solution
    $$\bar { x } =\cfrac { \sum { Fx }  }{ \sum { F }  } =\cfrac{2635}{70}=37.64$$
    $${\sigma}^{2}=\cfrac { \sum { F{ ( }x-\bar { x } )^{ 2 } }  }{ \sum { F }  } =\cfrac{12308.6}{70}=175.9$$
    $$\therefore \sigma=13.26$$ .

  • Question 8
    1 / -0
    If $$x $$ is multiplied by $$k$$ then $$\sigma$$  changes to
    Solution
    By the properties of standard deviation,
    $$\sigma(kx)=|k|\sigma(x)$$ 
    Therefore, by multiplying the $$x$$ by $$k$$, SD changes to $$k\sigma$$ 
  • Question 9
    1 / -0
    Standard Deviation of n observations $$a_1, a_2, a_3 .....a_n$$ is $$\sigma$$ Then the standard deviation of the observations $$\lambda a_1, \lambda a_2, ..., \lambda a_n$$ is
    Solution
    Let the mean of original data is $$\mu$$
    Then mean of observation if all the terms are multiplied by the constant $$\lambda$$ will be $$\lambda \mu$$
    If $$\sigma$$ be the standard deviation of original observation , then
    $$\sigma=\sqrt{\dfrac{1}{n}\displaystyle \sum_{i=1}^n (x_i-\mu)^2 }$$
    Now let the standard deviation of new observation is $$\sigma'$$, then
    $$\sigma'=\sqrt{\dfrac{1}{n}\displaystyle \sum_{i=1}^n (\lambda x_i-\lambda\mu)^2 }$$
    $$=\sqrt{\dfrac{1}{n}\displaystyle \sum_{i=1}^n \lambda^2( x_i-\mu)^2 }$$
    $$=|\lambda|\sqrt{\dfrac{1}{n}\displaystyle \sum_{i=1}^n( x_i-\mu)^2 }=|\lambda |\sigma$$
    Note that: standard deviation can never be negative 
  • Question 10
    1 / -0
    The mean deviation from the data $$3, 10, 10, 4, 7, 10, 5$$.
    Solution
    Given data is, $$3,10,10,4,7,10,5$$.
    Mean, $$\mu=\dfrac{\displaystyle \sum x_i}{N}=\dfrac{3+10+10+4+7+10+5}{7}=\dfrac{49}{7}=7$$
    Thus mean deviation $$=\dfrac{\displaystyle \sum|x_i-\mu|}{N}=\dfrac{|3-7|+3(10-7)+|4-7|+(7-7)+|5-7|}{7}$$ $$=\dfrac{4+9+3+0+2}{7}=2.57$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now