Self Studies

Statistics Test - 36

Result Self Studies

Statistics Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For a collection of $$11$$ items, sum of all items is $$132$$, then the arithmetic mean is.
    Solution

  • Question 2
    1 / -0
    If the mean of the numbers $$a,b,8,5,10$$ is $$6$$ and their variance is $$68$$, then $$ab$$ is equal to
    Solution
    Given,
    $$\cfrac { a+b+8+5+10 }{ 5 } =6$$
    $$\Rightarrow a+b+c+23=30$$
    $$\Rightarrow a+b=7....(i)$$
    and $$\quad \cfrac { \sum { { \left( { x }_{ 1 }-\overline { x }  \right)  }^{ 2 } }  }{ n } ={ \sigma  }^{ 2 }\quad $$
    $$\cfrac { { (a-6) }^{ 2 }+{ (b-6) }^{ 2 }+4+1+16 }{ 5 } =\cfrac { 34 }{ 5 } \quad $$
    $$\Rightarrow { (a-6) }^{ 2 }+{ (b-6) }^{ 2 }+21=34\quad $$
    $$\Rightarrow { a }^{ 2 }+{ b }^{ 2 }-84+93=34\quad \left[ \because a+b=7 \right] $$
    $$\quad \Rightarrow { a }^{ 2 }+{ b }^{ 2 }=25...(i)\quad $$
    From Eq.(i)
    $$\Rightarrow { (a+b) }^{ 2 }={ 7 }^{ 2 }$$
    $$\Rightarrow { a }^{ 2 }+{ b }^{ 2 }+2ab=49$$
    $$\Rightarrow 25+2ab=49$$ (From Eq.(ii))
    $$\Rightarrow 2ab=24\Rightarrow ab=12\quad $$
  • Question 3
    1 / -0
    If the median of the data 6,7,x-2,x,18,21 written in ascending order is 16, then the variance of that data is 
    Solution
    $$M=\dfrac{x-2+x}{2}=16$$

    Variance = $$\dfrac{1}{n}\sum (x_i-\overline{x})^{2}$$
    Required variance=$$31\dfrac{1}{3}$$
  • Question 4
    1 / -0

    The runs scored by Virat in 7 different matches are given as:

                     $$89,91,54,66,13,97,06$$

    Calculate the mean deviation about the median for this data.

    Solution
    Arranging data in ascending order,
    $$06,13,54,66,89,91,97$$
    Here, number of observations $$(n)=7(odd)$$
    $$\therefore$$  $$Median=\left(\dfrac{7+1}{2}\right)^{th}observation=4^{th}observation.$$
    $$\therefore$$  $$Median(M) =66$$

     $$x$$$$|x-M|$$ 
     $$06$$$$60$$ 
     $$13$$$$53$$ 
     $$54$$$$12$$ 
     $$66$$$$0$$ 
     $$89$$$$23$$ 
     $$91$$$$25$$ 
     $$97$$$$31$$ 
     $$\sum |x-M|=204$$ 
    $$\Rightarrow$$  Mean deviation about median $$=\dfrac{\sum|x-M|}{7}=\dfrac{204}{7}=29.142$$

  • Question 5
    1 / -0
    The mean deviation from the mean for the set of observations $$-1,0,4$$ is 
    Solution
    We have $$\overset { \_  }{ x } =\dfrac { -1+0+4 }{ 3 } =1$$
     $${ x }_{ i }$$ $$\left| { x }_{ i }-\overset { \_  }{ x }  \right| $$
     $$-1$$ $$|-1-1|=2$$
     $$0$$ $$|0-1|=1$$
     $$4$$ $$|4-1|=3$$
    Mean deviation from mean $$=\dfrac { \sum { \left| { x }_{ i }-\overset { \_  }{ x }  \right|  }  }{ n } =\dfrac { 2+1+3 }{ 3 } =2$$
    So, option A is correct.
  • Question 6
    1 / -0
    If the variance of $$1, 2, 3, 4, 5, ..., x$$ is $$10$$, then the value of $$x$$ is
    Solution
    We know that, the variance of first $$x$$ natural number is
    $$\text{Var} (x) = \dfrac {x^{2} - 1}{12} = 10$$     ....(given)
    $$\Rightarrow x^{2} = 120 + 1 = 121$$
    $$\Rightarrow  x = 11$$
  • Question 7
    1 / -0
    If $$\displaystyle \sum_{i = 1}^9 (x_i - 5) = 9$$ and $$\displaystyle \sum_{i = 1}^9 (x_i - 5)^2 = 45$$, then the standard deviation of the 9 times $$x_1, x_2, ....., x_9$$ is
    Solution
    Given, $$\displaystyle \sum_{i = 1}^n = (x_i - 5) = 9$$
    and $$\displaystyle \sum_{i = 1}^9 (x_i - 5)^2 = 45$$
    $$\therefore$$ Standard deviation
    $$= \sqrt{\dfrac{\left [\displaystyle \sum_{i = 1}^9 (x_i - 5) \right ]^2 - \displaystyle \sum_{i = 1}^9 (x_i - 5)^2}{9}}$$
    $$= \sqrt{\dfrac{(9)^2 - 45}{9}} = \sqrt{\dfrac{81 - 45}{9}}$$
    $$= \sqrt{\dfrac{36}{9}} = \sqrt{4} = 2$$
  • Question 8
    1 / -0
    The arithmetic mean of the observations 10,8,5,a,b is 6 and their variance 6.8. Then ab=
    Solution
    $$\dfrac{10+8+5+a+b}{5}=6,$$

    $$\dfrac{1}{n}\sum \left ( x_i-\overline{x} \right )^{2}=6.8$$
    solving above two equations we get values of a and b.
  • Question 9
    1 / -0
    The variance of first '$$n$$' natural number is
    Solution
    By using formula of variance, we have
    $${ \sigma  }^{ 2 }=\dfrac { 1 }{ n } \displaystyle\sum _{ i=1 }^{ n }{ { x }_{ i }^{ 2 } } -{ \left( \dfrac { 1 }{ n } \displaystyle\sum _{ i=1 }^{ n }{ { x }_{ i } }  \right)  }^{ 2 }$$
    $$=\dfrac { 1 }{ n } \left( { 1 }^{ 2 }+{ 2 }^{ 2 }+\cdots +{ n }^{ 2 } \right) -{ \left( \dfrac { 1 }{ n } \left( 1+2+\cdots +n \right)  \right)  }^{ 2 }$$
    $$=\dfrac { 1 }{ n } \cdot \dfrac { n\left( n+1 \right) \left( 2n+1 \right)  }{ 6 } -\dfrac { 1 }{ { n }^{ 2 } } \cdot { \left[ \dfrac { n\left( n+1 \right)  }{ 2 }  \right]  }^{ 2 }$$
    $$=\dfrac { \left( n+1 \right) \left( 2n+1 \right)  }{ 6 } -\dfrac { { \left( n+1 \right)  }^{ 2 } }{ 4 }$$
    $$ =\dfrac { { n }^{ 2 }-1 }{ 12 } $$
  • Question 10
    1 / -0
    Mean of $$10$$ observations is $$50$$ and their standard deviation is $$10$$. If each observation is subtracted by $$5$$ and then divided by $$4$$, then the new mean and standard deviation are
    Solution
    Given,mean of $$10$$ observations $$= \dfrac {\displaystyle \sum_{i = 1}^{10} x_{i}}{10} = 50$$
    $$\Rightarrow \displaystyle \sum_{i = 1}^{10} x_{i} = 500$$     .... (i)
    Therefore, new mean $$= \dfrac {\displaystyle \sum_{i = 1}^{10} x_{i} - 5\times 10}{4\times 10} = \dfrac {500 - 50}{4\times 10}$$ [using Eq. (i)]
    $$= \dfrac {450}{4\times 10} = 11.25$$
    and standard deviation $$= \dfrac {\text{old}(SD)}{4} = \dfrac {10}{4} = 2.5$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now