Self Studies

Statistics Test - 38

Result Self Studies

Statistics Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following is not the measure of dispersion.
    Solution
    Measure of dispersion is the extent to which the distribution is stretched or squeezed.

    The common measures of dispersion are standard deviation, variance, interquartile range , mean deviation.
  • Question 2
    1 / -0

    Directions For Questions

    As median divides an arranged sense into two equal parts, in similar way quartile divides an arranged series in $$4$$ equal part. For ungrouped frequency distribution formula of finding $$i^{th}$$ quartile $$=Q_i=\left\{i\cdot \left(\displaystyle\frac{N+1}{4}\right)\right\}^{th}$$ term, $$i=1, 2, 3$$.
    Quartile deviation: half of difference between upper quartile & lower quartile.
    $$\Rightarrow$$ Quartile deviation(Q.D.)$$=\displaystyle\frac{1}{2}(Q_3-Q_1)$$
    $$\Rightarrow$$ Coefficient of quartile $$=\displaystyle\frac{Q_3-Q_1}{Q_3+Q_1}$$.

    ...view full instructions

    Coefficient of quartile deviation of numbers $$6, 8, 9, 10, 11, 12, 14$$ is?
    Solution
    Arranging given numbers in ascending order,
    $$6,8,9,10,11,12,14$$
    Number of observation $$(N)=7$$
    $$Q_i=\left\{i\left(\dfrac{N+1}{4}\right)\right\}^{th}term$$

    $$Q_1=\left\{1.\left(\dfrac{7+1}{4}\right)\right\}^{th}term=2^{nd}term$$
    $$2^{nd}term=8$$
    $$\therefore$$  $$Q_1=8$$

    $$Q_3=\left\{3.\left(\dfrac{7+1}{4}\right)\right\}^{th}term=6^{th}term$$
    $$6^{th}term=12$$
    $$\therefore$$  $$Q_3=12$$

    $$\Rightarrow$$  Coefficient of quartile $$=\dfrac{Q_3-Q_1}{Q_3+Q_1}$$

                                               $$=\dfrac{12-8}{12+8}$$

                                               $$=\dfrac{4}{20}$$

                                               $$=\dfrac{1}{5}$$
  • Question 3
    1 / -0
    The average marks of $$10$$ students in a class was $$60$$ with standard deviation $$4$$. While the average marks of other $$10$$ students was $$40$$ with a standard deviation $$6$$. If all the $$20$$ students are taken together, their standard deviation will be.
    Solution
    Here,
    $$n_1=10,\overline{x}_1=60$$ and $$\sigma_1=4$$
    $$\therefore$$  $$\sum x_i=60\times 10=600$$
    Now, $$n_2=10,\overline{x}_2=40$$ and $$\sigma_2=6$$
    $$\therefore$$  $$\sum x_i=10\times 40=400$$
    $$\Rightarrow$$  Total marks of $$20$$ students $$(\sum_{i=1}^{20} x)=400+600=1000$$
    $$\Rightarrow$$  $$\overline{x}=\dfrac{1000}{20}=50$$

    Now, $$\sigma_1^2=(4)^2$$
    $$\Rightarrow$$  $$\dfrac{1}{n_1}\sum_{i=1}^{10}x_i^2-(\overline{x_1})^2=16$$
    $$\Rightarrow$$  $$\sum_{i=1}^{10}x_i^2=n_1(16+(\overline{x_1})^2)$$
                        $$=10(16+3600)$$
    $$\Rightarrow$$  $$\sum_{i=1}^{10}x_i^2=36160$$

    Now, $$\sigma_2^2=(6)^2$$
    $$\Rightarrow$$  $$\dfrac{1}{n_2}\sum_{i=11}^{20}x_i^2-(\overline{x_2})^2=36$$

    $$\Rightarrow$$  $$\sum_{i=11}^{20}x_i^2=(36+(\overline{x_2})^2)n_2$$
                        $$=(36+1600)10$$
    $$\Rightarrow$$  $$\sum_{i=11}^{20}x_i^2=16360$$
    Now, required standard deviation $$(\sigma)=\sqrt{\dfrac{1}{n}\sum x_i^2-\overline{x}^2}$$

                                                                    $$=\sqrt{\dfrac{1}{20}(36160+16360)-(50)^2}$$
                                                                    $$=\sqrt{2626-2500}$$
                                                                    $$=\sqrt{126}$$
                                                                    $$=11.2$$


  • Question 4
    1 / -0
    Find the coefficient of range for the data $$43,24,38,56,22,39,45$$
    Solution
    Given data is $$43, 24, 38, 56, 2, 39,45$$.
    The largest value of data is $$x_m=56$$
    The smallest value of data is $$x_0=22$$
    Coefficient of data $$=\dfrac{56-22}{56+22}=\dfrac{34}{78}=0.4359\approx 0.436$$
    Hence, option D is correct.
  • Question 5
    1 / -0
    If $$b_{i} = 1 - a_{i}, na = \displaystyle \sum_{i = 1}^{n} a_{i}, nb = \displaystyle \sum_{i = 1}^{n}b$$, then $$\displaystyle \sum_{i = 1}^{n}a_{i}b_{i} + \displaystyle \sum_{i = 1}^{n} (a_{i} - a)^{2} =$$
    Solution

  • Question 6
    1 / -0
    The following are the wages of 8 workers in a factory. Find the range and coefficient of range. Wages are in dollars: 1400, 1450, 1520, 1380, 1485, 1495, 1575, 1440.
    Solution
    The largest value of data is $$x_m=1575$$
    The smallest value of data is $$x_0=1380$$
    Range$$=x_m-x_0=1575-1380=195$$

    Coefficient of data$$=\dfrac{1575-1380}{1575+1380}=\dfrac{195}{2955}=0.0659\approx 0.66$$
  • Question 7
    1 / -0
    Find the coefficient of range for the given data
    $$59,46,30,23,27,40,52,35,29$$
    Solution
    Given data is $$59, 46, 30, 23, 27, 40, 52, 35, 29$$.
    The largest value of data is $$x_m=59$$
    The smallest value of data is $$x_0=23$$
    Coefficient of data $$=\dfrac{59-23}{59+23}=\dfrac{36}{82}=0.49\approx 0.44$$
  • Question 8
    1 / -0
    Which of the following is correct about measure of dispersion?
    Solution
    Dispersion measures the extent to which the items vary from some central value. It measures only degree of variation not measure direction of variation.
  • Question 9
    1 / -0
    If the coefficient of range is $$0.18$$ and the largest value is $$7.44$$,then the smallest value is?
    Solution
    Coefficient of range$$=\dfrac{x_m-x_0}{x_m+x_0}=\dfrac{7.44-x_0}{7.44+x_0}$$
    $$0.18(7.44+x_0)=7.44-x_0$$
    $$1.18x_0=7.44-7.44\times 0.18$$
    $$1.18x_0=6.1008$$
    $$x_0=5.17016\approx 5.17$$
  • Question 10
    1 / -0
    The weight in Kg of 13 students in a class are $$42.5,47.5,48.6,50.5,49,46.2,49.8,45.8,43.2,48,44.7,46.9,42.4$$.Find the coefficient of range.
    Solution
    The largest value of data is $$x_m=49.8$$
    The smallest value of data is $$x_0=42.4$$
    Coefficient of data$$=\dfrac{49.8-42.4}{49.8+42.4}=\dfrac{7.4}{92.2}=0.08026\approx 0.0803$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now