Self Studies

Statistics Test - 41

Result Self Studies

Statistics Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For $$X \rightarrow B (n, p), \,$$ if $$\, n = 25, E (x) = 10$$ , then S.D. $$(x) = $$
    Solution
    In the given Binomial Distribution,
    Number of trials, $$n=25$$
    Let probability of success $$=p$$

    Mean $$=E(x)=10$$

    $$\Rightarrow np=10$$

    $$25p=10$$

    $$p=\cfrac{10}{25}=\cfrac{2}{5}$$

    Then probability of failure, $$q=1-p=\cfrac{3}{5}$$

    Standard deviation for Binomial Distribution $$=\sqrt{npq}$$
    $$=\sqrt{25\times \cfrac{2}{5}\times \cfrac{3}{5}}$$
    $$=\sqrt{6}$$
    $$\approx 2.45$$
  • Question 2
    1 / -0
    The sum of squares of deviations for $$10$$ observations taken from mean $$50$$ is $$250 $$. Then Co-efficient of variation is
    Solution
    $$\sum(x-\overline{x})^2=250$$, $$\overline{x}=50$$
    $$\Rightarrow$$  Standard deviation $$(\sigma)=\sqrt{\dfrac{250}{10}}=\sqrt{25}=5$$
    $$\Rightarrow$$  Coefficient of variation $$=\sqrt{\dfrac{\sum(x-\overline{x})^2}{n}}$$
                                                 $$=\dfrac{\sigma}{Mean}\times 100$$

                                                 $$=\dfrac{5}{50}\times 100$$

                                                 $$=10\%$$
  • Question 3
    1 / -0
    If the standard deviation of the numbers $$2,3,a$$ and $$11$$ is $$3.5,$$ then which of the following is true?
    Solution
    Numbers are $$2,3,a$$ and $$11$$
    $$N=4$$
    Standard deviation $$\sigma=3.5$$
    Mean of numbers $$(\overline{x})=\dfrac{2+3+11+a}{4}=\dfrac{16+a}{4}$$

    $$\Rightarrow$$  $$\sigma^2=\dfrac{1}{N}\sum(x_i-\overline{x})^2$$
    $$\Rightarrow$$  $$3.5\times 3.5\times 4\times  16=(8+a)^2+(4+a)^2+(16-3a)^2+(a-28)^2$$
    $$\Rightarrow$$  $$784=64+a^2+16a+16+a^2+8a+256+9a^2-96a+a^2+784-56a$$
    $$\Rightarrow$$  $$784=12a^2-128a+1120$$
    $$\Rightarrow$$  $$196=3a^2-32a+280$$

    $$\Rightarrow$$  $$3a^2-32a+84=0$$

  • Question 4
    1 / -0
    Coefficient of range $$5, 2, 3, 4, 6, 8, 10$$ is?
    Solution
    $${ x_{ m } }=10{ x_{ 0 } }=2$$
    coefficient of range 
    $$\begin{array}{l} =\frac { { { x_{ m } }-{ x_{ 0 } } } }{ { { x_{ m } }t{ x_{ 0 } } } }  \\ =\frac { { 10-2 } }{ { 10+2 } } =\frac { 8 }{ { 12 } } =\frac { 2 }{ 3 }  \end{array}$$
  • Question 5
    1 / -0
    Find variance of the following data.
    Class intervalFrequency
    $$4-8$$$$3$$
    $$8-12$$$$6$$
    $$12-16$$$$4$$
    $$16-20$$$$7$$
    Solution
    $$C.I$$ $$x_i$$ $$f_i$$ $$f_ix_i$$ $$(x_i-\overline{x})^2$$ $$f_i(x_i-\overline{x})^2$$ 
    $$4-8$$ $$6$$ $$3$$ $$18$$ $$49$$ $$147$$ 
    $$8-12$$ $$10$$ $$6$$ $$60$$ $$9$$ $$54$$ 
    $$12-16$$ $$14$$ $$4$$ $$56$$ $$1$$ $$4$$ 
    $$16-20$$ $$18$$ $$7$$ $$126$$ $$25$$ $$175$$ 
      $$\sum f_i=20$$ $$\sum f_ix_i=260$$ $$\sum(x_i-\overline{x})^2=84$$  $$\sum f_i(x_i-\overline{x})^2=380$$ 
    $$\Rightarrow$$  $$\overline{x}=\dfrac{\sum f_ix_i}{\sum f_i}=\dfrac{260}{20}=13$$
    $$\Rightarrow$$  $$Variance(\sigma^2)\dfrac{\sum f_i(x_i-\overline{x})^2}{\sum f_i}=\dfrac{380}{20}=19$$
  • Question 6
    1 / -0
    Range of data $$7, 8, 2, 1, 3, 13, 18$$ is?
    Solution
    $$\begin{matrix} 7,8,2,1,3,13,18, \\ range\, \, of\, \, data=\left( { \max  imum-\min  imum } \right)  \\ =\left( { 18-1 } \right) =17\, \, \, \, \, Ans. \\  \end{matrix}$$
  • Question 7
    1 / -0
    Suppose a population $$A$$ has $$100$$ observations $$101,102,........,200$$ and another population $$B$$ has $$100$$ observations $$151,152......,250 $$. If $$V_{A}and V_{B}$$ represent the variences of the two populations respectively, then $$V_{A}/ V_{B}$$ is
    Solution

  • Question 8
    1 / -0
    Mean deviation of $$7,10,10,15,10,8,8,7,3,2,10$$ through mean is
    Solution
    mean $$=\dfrac{\sum {x_1}}{n}=\dfrac{90}{11}\approx 8.18$$
    derivation through mean = $$|x_i-\bar x|$$
    & mean of it is $$=\dfrac{\sum|{x_i-\bar x}|}{n}$$
    $$=\dfrac{(1.18+1.82+1.82+6.82+8.18+0.18+0.18+1.18+5.18+6.18+1.82)}{11}$$
    $$=\dfrac{34.54}{11}=3.14$$
  • Question 9
    1 / -0
    Find the standard deviation of 10 observation 111,211,311,....1011.
    Solution

  • Question 10
    1 / -0
    The two observations $$A$$ & $$B$$ are given by $$100, 101, ........149$$ and $$200, 201, .......,249$$ with $$V_{A}$$ and $$V_{B}$$ are variances of $$A$$ and $$B$$ than $$V_{A}$$ is equal to :
    Solution
    $$\sigma {x^2} = \frac{{\sum {{d^2}} }}{h}$${here deviation are taken  from mean}
    Since, A and B have consecutive integers therefore both have same standard deviation and hence variation 
    $${ V_{ A } }={ V_{ B } }\sum { { d^{ 2 } }\, \, is\, \, same } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now