Self Studies

Statistics Test - 43

Result Self Studies

Statistics Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For the observations $${ x }_{ 1, }{ x }_{ 2 },{ x }_{ 3 },........{ x }_{ 18, }$$ it is given that $$\sum _{i =1 }^{ 18 }{ ({ x }_{ i }-8)=9 } $$ and $$\sum _{  j=1}^{ 18 }{ { ({ x }_{ j}-8) }^{ 2 }=45 } $$ then the standard deviation of these eighteen observations is 
    Solution

  • Question 2
    1 / -0

    Directions For Questions

    The daily wages (in $$Rs$$) of $$11$$ persons given as $$140, 145, 130, 165, 160, 125, 150, 170, 175, 120, 180$$ then

    ...view full instructions

    the coefficient of quartile deviation is 
    Solution
    $$\begin{array}{l} 120,125,130,140,145,150,160,165,170,175,180 \\ n=11 \\ \Rightarrow { Q_{ 1 } }=\left( { \frac { { n+1 } }{ 4 }  } \right) th\, \, term=\left( { \frac { { 12 } }{ 4 }  } \right) th\, \, term=3th\, \, term \\ \Rightarrow { Q_{ 3 } }=130 \\ and \\ { Q_{ 3 } }=3\left( { \frac { { n+1 } }{ 4 }  } \right) th\, \, term\, =3\left( { \frac { { 12 } }{ 4 }  } \right) th\, \, term=9th\, \, term=170 \\ Then,\, \, coefficient\, \, of\, \, quartiledeviation\, \, =\frac { { \left( { { Q_{ 3 } }-{ Q_{ 1 } } } \right)  } }{ { \left( { { Q_{ 3 } }+{ Q_{ 1 } } } \right)  } } \times 100 \\ =100\times \frac { { \left( { 170-130 } \right)  } }{ { \left( { 170+130 } \right)  } } =\frac { { 40 } }{ { 300 } } \times 100=\frac { { 40 } }{ 3 } \, \,  \end{array}$$
  • Question 3
    1 / -0
    Mode of the data $$3,2,3,2,3,5,6,6,5,3,2,5$$ is
  • Question 4
    1 / -0
    The variance of the elements of the row which contains  $$2019$$  is  $$K$$  then the value of  $$3 K$$  is
  • Question 5
    1 / -0
    The variance of first $$30$$ natural numbers, is
    Solution
    We know that the variance of first $$n$$ natural number is
    $$= \cfrac { { { n^{ 2 } }-1 } }{ { 12 } } $$

    Put $$ n=30$$

    Therefore,
    $$ \\ \cfrac { { 900-1 } }{ { 12 } } =\cfrac { { 899 } }{ { 12 } }  \\ =74.916 \\ =74.92$$

    Hence, this is the answer.
  • Question 6
    1 / -0
    If the mean deviation about the median of the numbers $$a,2a,....,50a$$ is $$50$$, then $$|a|$$ equals:-
    Solution
    Given series:- $$a, 2a, 3a, ....., 50a$$
    Median $$= \cfrac{25a + 26a}{2} = 25.5 a$$
    Mean deviation about median $$= 50 \quad \left( \text{Given} \right)$$
    Mean deviation $$= \cfrac{\sum_{i = 1}^{50}{\left| {x}_{i} - 25.5a \right|}}{50}$$
    $$\therefore \cfrac{24.5a + 23.5a + 22.5a + ..... + 23.5a + 24.5a}{50} = 50$$
    $$\Rightarrow a + 3a + 5a + ..... + 47a + 49a = 2500$$
    $$\Rightarrow \cfrac{25}{2} \left( 2a + \left( 25 - 1 \right) 2a \right) = 2500$$
    $$\Rightarrow 2a \times 25 = 200$$
    $$\Rightarrow a = \cfrac{200}{50} = 4$$
  • Question 7
    1 / -0
    The variance of first $$50$$ even natural numbers is:-
  • Question 8
    1 / -0
    Two distributions each of $$5$$ observations having veriance $$4$$ and $$5$$. If their arithmetic mean are $$2$$ and $$4$$ respectively., Find the variance of combined distribution 
    Solution

  • Question 9
    1 / -0
    .

  • Question 10
    1 / -0
    If $$\displaystyle\sum _{ i=1 }^{ 18 }{ \left( { x }_{ i }-8 \right)  } =153,\displaystyle\sum _{ i=1 }^{ 18 }{ \left( { x }_{ i }-8 \right) ^{ 2 } } =45$$ then standard deviation of $$x_{1},x_{2},........,x_{n}$$ is 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now