Self Studies

Statistics Test - 48

Result Self Studies

Statistics Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The standard deviation $$\sigma$$ of the first $$N$$ natural numbers can be obtained using which one of the following formula?
    Solution
    $$\sigma^2=\dfrac{1}{n}\sum_{i=1}^{n}i^2-\left(\dfrac{1}{n}\sum_{i=1}^{n}i\right)^2$$

         $$=\dfrac{1}{n}(1^2+2^2+...+n^2)-\left(\dfrac{1}{n}(1+2+...+n)\right)^2$$

         $$=\dfrac{1}{n} \times \dfrac{n(n+1)(2n+1)}{6}-(\dfrac{n+1}{2})^2=\dfrac{n^2-1}{12}$$

    $$\therefore \sigma=\sqrt{\dfrac{n^2-1}{12}}$$
  • Question 2
    1 / -0
    Mean deviation of the series $$a,a+d,a+2d,......,a+2nd$$ from its mean is
  • Question 3
    1 / -0
    The standard deviation of the data:
    $$x:$$ $$1$$  $$a$$  $${a}^{2}$$........$${a}^{n}$$
    $$f:$$  $${ _{  }^{ n }{ C } }_{ 0 }$$  $${ _{  }^{ n }{ C } }_{ 1 }$$.....$${ _{  }^{ n }{ C } }_{ n }$$ is
    Solution

  • Question 4
    1 / -0
    Standard deviation of the first $$2$$n + $$1$$ natural numbers is 
  • Question 5
    1 / -0
    Variance of $$^{10}C_{0}, ^{10}C_{1}, ^{10}C_{2},^{10}C_{10}$$ is:
  • Question 6
    1 / -0
    If the sum of mean and variance of $$B.D$$ for $$5$$ trials is $$1.8$$, the binomial distribution is 
    Solution
    a binomial distribution is characterized by $$2$$ parameters:
    $$n$$ - number of trials
    $$p$$ - probability of success in one trail.
    We there by know n=5, we need to find $$p$$ .
    $$Mean$$ of the binomial distribution is given by,
    $$mean = np$$
    variance is given by 

    $$variance\quad =\quad np(1-p)\\ \therefore \quad mean\quad +\quad variance\quad =\quad 1.8\\ =>\quad 5p\quad +\quad 5p(1-p)\quad =\quad 1.8\\ =>\quad 5{ p }^{ 2 }-10p+1.8=0\\ =>\quad p=\quad 0.2\quad or\quad 1.8$$
    $$ =>\quad p=\quad 0.2\ [\because 1\ge p\ge 0]$$
    $$q=0.8$$
    Binomial distribution is $$(0.2+0.8)^n$$.
    Hence the answer is A 
  • Question 7
    1 / -0
    What is standard deviation of the set of observations $$32,28,29,30,31$$?
    Solution
    $$\sigma =\displaystyle \sum _{ i=1 }^{ n }{ \sqrt { \dfrac { \left( { x }_{ i }-{ x }_{ av } \right)  }{ m-1 }  }  } $$
    $${ x }_{ au }=\dfrac { 32+28+29+30+31 }{ 5 } =30$$
    $$\therefore =\sqrt { \dfrac { { \left( 32-30 \right)  }^{ 2 }+{ \left( 28-30 \right)  }^{ 2 }+{ \left( 29-30 \right)  }^{ 2 }+{ \left( 30-30 \right)  }^{ 2 }+{ \left( 31-30 \right)  }^{ 2 } }{ 5-1 }  } $$
    $$=\sqrt { \dfrac { 4+4+1+1 }{ 4 }  } =\sqrt { \dfrac { 10 }{ 4 }  } =\sqrt { \dfrac { 10 }{ 2 }  } =1.58$$
  • Question 8
    1 / -0
    The scores of a batsman in ten innings are: $$38, 70, 48, 34, 42, 55, 63, 46, 54, 44$$. Find the mean deviation about median.
    Solution
    $$\begin{array}{l} 38,70,48,42,55,63,46,54,44 \\ Arranging\, :34,38,42,44,48,55,63,70 \\ Median=\frac { { \frac { N }{ 2 } ,\frac { n }{ 2 } +1 } }{ 2 } =\frac { { 5,6 } }{ 2 } = \\ =\frac { { 46+48 } }{ 2 } =47 \\ Mean\, \, deviation \\ =\left| { 34-47 } \right| +\left| { 38-47 } \right| +\left| { 42-47 } \right| +\left| { 44-47 } \right|  \\ +\left| { 46-47 } \right| +\left| { 48-47 } \right| +\left| { 54-47 } \right| +\left| { 55-47 } \right|  \\ \left| { 63-47 } \right| +\left| { 70-47 } \right|  \\ \overline { 10 }  \\ =13+9+5+3+1+1+7+8+16+23 \\ =\frac { { 86 } }{ { 10 } } =86 \end{array}$$
  • Question 9
    1 / -0
    Which of the following show direct variation?
    Solution

  • Question 10
    1 / -0
    Find the range in the following frequency distribution of economics marks.
    No of studentsMarks
    510-20
    1020-30
    2530-40
    2040-50
    1050-60
    560-70
    1070-80
    1080-90
    590-100
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now