Self Studies

Statistics Test - 51

Result Self Studies

Statistics Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\sum _{ i=1 }^{ 9 }{ ({ x }_{ i }-5)=9 } $$ and $$\sum _{ i=1 }^{ 9 }{ { { ( }x_{ i }-5 })^{ 2 }=45 }, $$ then the standard deviation of the 9 items $${ x }_{ 1 },{ x }_{ 2, }.........{ x }_{ 9 }$$ is
    Solution

  • Question 2
    1 / -0
    The standard deviation of $$50$$ values of a variable x is $$15$$; if each value of the variable is divided by $$(-3)$$; then the standard division of the new set of $$50$$ values of x will be
    Solution

  • Question 3
    1 / -0
    mean deviation from mean of the data 
    marks 1015202530
    No.of student246855
  • Question 4
    1 / -0
    .

    Solution

  • Question 5
    1 / -0
    The variance of  $$20$$  observations is  $$5 .$$  If each observation is multiplied by  $$- 1$$  and added by  $$2 ,$$  then new variance is
    Solution

  • Question 6
    1 / -0
    for two data sets,each of size 5, the variances are given to be 4 and 5 andthe correspondings means are given to be 2 and 4 respectively. the variances of the combined data set is
    Solution

  • Question 7
    1 / -0
    The mean deviation about the mean of the following data is?
    $$x_1$$39172327
    $$f_1$$8101295
    Solution
    Given data is

     $$x_i$$$$3$$ $$9$$ $$17$$ $$23$$ $$27$$ 
     $$f_i$$$$8$$ $$10$$ $$12$$ $$9$$ $$5$$ 
     $$x_i$$$$f_i$$ $$f_ix_i$$ $$|x_i - \bar{x}|$$  $$f_i |x_i - \bar{x}|$$
     $$3$$
    $$9$$
    $$17$$
    $$23$$
    $$27$$
    $$8$$
    $$10$$
    $$12$$
    $$9$$
    $$5$$ 
    $$24$$
    $$90$$
    $$204$$
    $$207$$
    $$137$$ 
    $$12$$
    $$6$$
    $$2$$
    $$8$$
    $$12$$ 
    $$96$$
    $$60$$
    $$24$$
    $$72$$
    $$60$$ 
      $$N = 44$$$$\sum f_ix_i = 660$$   $$\sum f_i |x_i - \bar{x}| = 312$$

    Mean $$\bar{x} = \dfrac{\sum f_i x_i}{N}$$

                  $$= \dfrac{660}{44}$$

    $$\Rightarrow \bar{x} = 15$$

    Mean deviation $$= \dfrac{\sum f_i |x_i - \bar{x}|}{N}$$

                               $$ = \dfrac{312}{44}$$

    $$\Rightarrow$$ Mean deviation $$ = 7.09$$.

    $$\therefore$$ Mean deviation about mean of the following data is $$7.09$$ is correct answer.
  • Question 8
    1 / -0
    If mean deviation through median is 15 and median is 450, then coefficient of mean deviation is  
    Solution
    $$\textbf{Step 1: Apply the Mean Deviation formula.}$$
                    $$\text{Given: Mean deviation through median}=15$$
                    $$\text{Median}=450$$
                    $$\text{Coefficient of Mean Deviation }$$$$= \dfrac{Mean\ deviation\ through\ median}{Median}$$

                                                                            $$=\dfrac{15}{450}$$

                                                                            $$=\dfrac{1}{30}$$

    $$\textbf{Hence, the coefficient of Mean Deviation is  }\dfrac{1}{30}.$$

  • Question 9
    1 / -0
    If $$\sum _{ i=1 }^{ 18 }{  } $$ $$(X_{i}-8)=9$$ and $$\sum _{ i=1 }^{ 18 }{  } $$$$(x_{i}-8)^{2}=45$$ , then the standard deviation of $$x_{1},x_{2},.....,x_{18}$$ is 
    Solution

  • Question 10
    1 / -0
    The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now