Self Studies

Probability Test - 21

Result Self Studies

Probability Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\sim (p\rightarrow \sim q)$$ is equivalent to
    Solution
    In if-then form, p q means that "If you do not do your homework, then you will flunk", where p (which is equivalent to ~~p ) is "You do not do your homework". By definition, p q is false if, and only if, its hypothesis, p, is true and its conclusion, q, is false.
  • Question 2
    1 / -0
    If $$A = \left\{ {1,2,3} \right\},\,B = \left\{ {2,4,5,6} \right\}$$ and $$S = \left\{ {1,2,3,4,5,6} \right\}$$, then $$A$$ and $$B$$ is called as __________
    Solution
    Since all the elements of A and B and in S, Hence A and B is called Exhaustive event
  • Question 3
    1 / -0
    Consider the following relations
    (1)$$A-B=A-\left( A\cap B \right) $$
    (2)$$A=A-\left( A\cap B \right) \cup \left( A-B \right) $$
    (3)$$A-\left( A\cup C \right) =\left( A-B \right) \cup \left( A-C \right) $$
    Which of these is correct
    Solution
    $$\begin{array}{l} 1)\, \, \, \, A-B=A-\left( { A\cap B } \right)  \\ 2)\, \, \, A=A-\left( { A\cap B } \right) \cup \left( { A-B } \right)  \\ 3)\, \, \, A-\left( { A\cup C } \right) =\left( { A-B } \right) \cup \left( { A-C } \right)  \\ Here,\, \, \left( 1 \right) \, and\, \left( 3 \right) \, are\, true \\ Hence,\, \, option\, \, A\, \, \, is\, the\, correct\, answer. \end{array}$$
  • Question 4
    1 / -0
    Result of each experiment is called 
    Solution
    C is correct
  • Question 5
    1 / -0
    If the probabilities of the events $$A\cap B, A, B$$ and  $$A\cup B$$  are in A.P. with second term of A.P. is equal to common difference then A and B are
    Solution
    $$P(A\cap B), P(A), P(B), P(A\cup B)$$ are in A.P.
    So $$D=P(A)-P(A\cap B)=P(B)-P(A)=P(A\cup B)-P(B)$$
    and second term of A.P. is equal to common difference: $$P(A)=D$$
    $$P(A)=P(A)-P(A\cap B)$$ $$\Rightarrow$$ $$P(A\cap B)=0$$

    We also have to find the value of P(B)
    $$P(A)=P(B)-P(A)$$ $$\Rightarrow$$ $$P(B)=2P(A)$$
    Hence A and B are Mutually Exclusive
  • Question 6
    1 / -0
    The probability that at least one of the events A and B occur is 0.6. If A and B occur simultaneously with probability 0.2, then $$P\left ( \bar{A} \right )+ P\left ( \bar{B} \right )=$$
    Solution
    $$P(A\cup B)=P(A)+P(B)-P(A\cap B)$$
    $$P(A\cup B)=1-P\left ( \bar{A} \right )+ 1 - P\left ( \bar{B} \right )-P(A\cap B)$$
    $$0.6=2-P\left ( \bar{A} \right )- P\left ( \bar{B} \right )-0.2$$  Given: $$\left [ {P(A\cup B)=0.6} ; {P(A\cap B)=0.2} \right ] $$
    $$P\left ( \bar{A} \right )+ P\left ( \bar{B} \right )=2-0.6-0.2=1.2$$
  • Question 7
    1 / -0
    If A, B are two independent events, $$P\left ( A \right )=\dfrac{3}{4}$$ and $$P\left ( B \right )=\dfrac{5}{8}$$ , then $$P\left ( A\cup B \right )=$$
    Solution
    $$P(A\cup B)=P(A)+P(B)-P(A\cap B)$$
    A, B are two independent events so $$P(A\cap B)=P(A)P(B)$$
    $$P(A\cup B)=\dfrac{3}{4}+\dfrac{5}{8}-({\dfrac{3}{4}}\times{\dfrac{5}{8}})$$

    $$P(A\cup B)=\dfrac{29}{32}$$
  • Question 8
    1 / -0
    If A and B are any two events in a sample space S then $$P\left ( A\cup B \right )$$ is
    Solution
    From De-morgan's laws,
    $$P(A \cup B) = P(A) + P(B) - P(A \cap B)  \leq  P(A) + P(B)$$
    so, we conclude that $$P(A \cup B) \leq P(A) + P(B)$$
  • Question 9
    1 / -0
    If A & B are two events then  $$P\left \{ \left ( A\cap \bar{B} \right )\cup\left ( \bar{A}\cap B \right )  \right \}= $$
    Solution
    $$P\left ( A\cup B \right )-P\left ( A\cap B \right )$$

  • Question 10
    1 / -0
    If A, B, C are any three events and P(S) denotes the probability of S happening, then $$P\left \{ A\cap \left ( B\cup C \right ) \right \}= $$
    Solution
    We have formula, given by,

    $$P\left \{ A\cap (B\cup C) \right \}$$

    $$=P(A\cap B)+P(A\cap C)-P(A\cap B\cap C)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now