Self Studies

Probability Test - 22

Result Self Studies

Probability Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If A and B are two events such that $$ P\left ( A \right )=\dfrac{3}{8},  P\left ( B \right )= \dfrac{5}{8}$$  and  $$P\left ( A\cup B \right )=\dfrac{3}{4}$$,  then $$P\left ( A\cap \bar{B} \right )=$$
    Solution
    $$P(A\cup B)=P(A)+P(B)-P(A\cap B)$$
    $$\dfrac{3}{4}=\dfrac{3}{8}+\dfrac{5}{8}-P(A\cap B)$$
    $$P(A\cap B)=\dfrac{1}{4}$$
    $$P(A\cap \bar B)=P(A)-P(A\cap B)$$
    $$P(A\cap \bar B)=\dfrac{3}{8}-\dfrac{1}{4}=\dfrac{1}{8}$$
  • Question 2
    1 / -0
    If A and B are two mutually exclusive events such that $$P\left ( A \right )= 0.55$$  and  $$P\left ( B \right ) = 0.35$$  then  $$P\left ( \bar{A}\cup \bar{B}\right )= $$
    Solution
    Doesn't matter what is the value of $$P(A)$$ or $$P(B)$$.
    Because A & B both are mutually cases.
    So $$P\left ( \bar{A}\cup \bar{B}\right )=1$$.

  • Question 3
    1 / -0
    If A and B are two events such that $$P\left ( A \right )= \dfrac{1}{4}; P\left ( A\cup B \right )=\dfrac{1}{3}$$ and  $$P\left ( B \right )= P$$ , the value of P if A and B are mutually exclusive is
    Solution
     A and B are mutually exclusive, so $$P(A\cap B)=0$$
    $$P(A\cup B)=P(A)+P(B)-P(A\cap B)$$
    $$\dfrac{1}{3}=\dfrac{1}{4}+P-0$$
    $$P=\dfrac{1}{12}$$
  • Question 4
    1 / -0
    If A and B are two events such that $$P\left ( A \right )=\dfrac{1}{4}; P\left ( A\cup B \right )=\dfrac{1}{3}$$ and $$ P\left ( B \right )=p$$, the value of $$p$$ if A and B are independent is
    Solution
    If A and B are independent, then $$P\left (\dfrac{A}{B}\right )=P(A)$$
    $$P\left ( \dfrac{A}{B}\right )$$$$=$$$$\dfrac{P(A \cap B)}{P(B)}$$

    So, $$P(A \cap B)=P(A)P(B)=\dfrac{1}{4}p$$

    $$P(A \cup B)=P(A)+P(B)-p(A \cap B)$$

    $$\dfrac{1}{3}=\dfrac{1}{4}+p-\dfrac{1}{4}P$$

    $$P=\dfrac{1}{9}$$
  • Question 5
    1 / -0
    If $$P\left ( A\cup B \right )= 0.8,  P\left ( A\cap B \right )= 0.3$$, then $$P\left ( \bar{A} \right )+P\left ( \bar{B} \right )= $$
    Solution
    $$P(A\cup B)=P(A)+P(B)-P(A\cap B)$$
    $$P(A\cup B)=1-P(\bar{A})+1-P(\bar{B})-P(A\cap B)$$
    $$0.8=1-P(\bar{A})+1-P(\bar{B})-0.3$$
    $$P(\bar{A})+P(\bar{B})=2-0.8-0.3=0.9$$
  • Question 6
    1 / -0
    The probability that at least one of the events $$A$$ and $$B$$ occurs is $$0.7$$ and they occur simultaneously with probability $$0.2.$$ Then $$P\left( \overline { A }  \right) +P\left( \overline { B }  \right) =$$
    Solution
    We have $$P\left( A\cup B \right) =0.7$$ and $$P\left( A\cap B \right) =0.2$$.
    Now, $$P\left( A\cup B \right) =P\left( A \right) +P\left( B \right) -P\left( A\cap B \right) $$
    $$\Rightarrow P\left( A \right) +P\left( B \right) =0.9\Rightarrow 1-P\left( \overline { A }  \right) +1-P\left( \overline { B }  \right) =0.9\\ \Rightarrow P\left( \overline { A }  \right) +P\left( \overline { B }  \right) =1.1$$
  • Question 7
    1 / -0
    If A and B are two mutually exclusive events such that $$P\left ( A \right )= \frac{1}{2}P\left ( B \right )$$ and $$A\cup B= S$$ the sample space, then $$P\left ( A \right )$$
    Solution
    Given $$P\left( A \right) =\cfrac { 1 }{ 2 } P(B)$$ and $$A\cup B=S$$ , the sample space A and B are mutually exclusive events which means $$P\left( A\cap B \right) =0\\ $$ 
    whereas $$P\left( A\cup B \right) =S$$ means  $$P\left( A\cup B \right) =1$$
    We know that $$P\left( A\cup B \right) =P\left( A \right) +P\left( B \right) -P\left( A\cap B \right) $$
    $$\Rightarrow 1=P\left( A \right) +2P\left( A \right) -0\\ \Rightarrow 1/3=P\left( A \right) $$
  • Question 8
    1 / -0
    A random variable $$X$$ has the probability distribution
    $$X=x :  \ \ \ \ \ \ \ \ 1 \quad,2\quad, 3\quad, 4\quad, 5\quad, 6\quad, 7\quad, 8$$
    $$P(X) :  \  \  \ 0.15, 0.23, 0.12, 0.1, 0.2, 0.08, 0.07, 0.05$$
    Events $$E=$$ {X is a prime number} and
    $$F= {X / X <4}$$
     $$i:p\overline{(E\cup F )}=0.23$$
    $$ii:p(\bar{E}\cup \bar{F})=0.65$$
    Which of$$ I, II$$ is (are) true $$?$$
    Solution
    Prime numbers $$= 2,3,5,7$$
    $$F = 1,2,3$$
    $$E\cup F=\quad \{ 1,2,3,5,7\} \\ \overline { E } \cup \overline { F } =\{ 1,4,5,6,7,8\} \\ \overline { P(E\cup F) } =1-P(E\cup F)=0.1+0.08+0.05=0.23\\ P(\overline { E } \cup \overline { F } )=\quad 1-0.23-0.12=0.65$$
    Hence, option 'C' is correct.
  • Question 9
    1 / -0
    Three numbers are chosen at random withoutreplacement from the set of integers $${1, 2, 3,....10}$$. The probability that the minimum of the chosen numbers is $$3$$ or the maximum of the chosen numbers is $$7$$, is equal to
    Solution
    Case 1: When 3 is minimum
    Then the number of choices for choosing 2 cards other then $$7....4,5,6,8,9,10= 6C_2 = 15 $$
    The number of ways when 7 is max but 3 not included: $$1,2,4,5,6=10$$ ways
    When both 3,7 are present $$8$$ ways
    Total desired cases $$33$$
    Total ways of picking 3 numbers  at random $$= 10C_3 = 120$$
    Probability = $$33/120=11/40$$
  • Question 10
    1 / -0
    A and B are mutually exclusive events, then
    Solution
    If A and B are mutually exclusive this simply means$$\quad P \left( A\cap B \right) =\phi \\ \Rightarrow P\left( A\cup B \right) \leq 1\\ \Rightarrow P\left( A \right) +P\left( B \right) -P\left( A\cap B \right)  \leq 1\quad \quad \quad \quad \quad \quad \quad P\left( A\cap B \right) =0\quad ,\because \left( A\cap B \right) =\phi \\ \Rightarrow P\left( A \right) \leq 1-P\left( B \right) \\ \Rightarrow P\left( A \right) \leq P\left( \overline { B }  \right) $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now