Self Studies

Probability Test - 23

Result Self Studies

Probability Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For any two independent events $${ E }_{ 1 }$$ and $${ E }_{ 2 }$$, $$P\left\{ \left( { E }_{ 1 }\cup { E }_{ 2 } \right) \cap \left( \overline { { E }_{ 1 } }  \right) \cap \left( \overline { { E }_{ 2 } }  \right)  \right\} $$ is
    Solution
    We have $$=P\left\{ \left( { E }_{ 1 }\cup { E }_{ 2 } \right) \cap \left( \overline { { E }_{ 1 } }  \right) \cap \left( \overline { { E }_{ 2 } }  \right)  \right\} $$
    $$=P\left\{ \left( { E }_{ 1 }\cup { E }_{ 2 } \right) \cap \left( \left( \overline { { E }_{ 1 } }  \right) \cap \left( \overline { { E }_{ 2 } }  \right)  \right)  \right\} =P\left\{ \left( { E }_{ 1 }\cup { E }_{ 2 } \right) \cap \left( \overline { { E }_{ 1 }\cup { E }_{ 2 } }  \right)  \right\} $$
    $$\displaystyle =P\left( \phi  \right) =0\le \frac { 1 }{ 4 } $$
  • Question 2
    1 / -0
    Let $$A$$ and $$B$$ be two events such that $$P(\displaystyle \overline{A\cup B})=\frac{1}{6}, P(A\displaystyle \cap B)=\frac{1}{4}$$ and $$P(\displaystyle \overline{A})=\frac{1}{4}$$, then events $$A$$ and $$B$$ are
    Solution
    Given, $$P\left( \overline { A\cup B }  \right) =\dfrac { 1 }{ 6 } $$
    $$ P\left( A\cap B \right) =\dfrac { 1 }{ 4 } ,P\left( \overline { A }  \right) =\dfrac { 1 }{ 4 } \\ \because P\left( \overline { A\cup B }  \right) =\dfrac { 1 }{ 6 } $$

    $$\Rightarrow 1-P\left( A\cup B \right) =\dfrac { 1 }{ 6 } $$

    $$  \Rightarrow P\left( A\cup B \right) =1-\dfrac { 1 }{ 6 } =\dfrac { 5 }{ 6 } $$

    $$ \Rightarrow P\left( A \right) +P\left( B \right) -P\left( A\cap B \right) =\dfrac { 5 }{ 6 } $$

    $$  \Rightarrow P\left( B \right) =\dfrac { 5 }{ 6 } -\dfrac { 3 }{ 4 } +\dfrac { 1 }{ 4 } \quad \quad \quad \quad \quad \quad \quad \because P\left( \overline { A }  \right) =\dfrac { 1 }{ 4 } \Rightarrow P\left( A \right) =\dfrac { 3 }{ 4 } $$

    $$ \Rightarrow P\left( B \right) =\dfrac { 1 }{ 3 }$$

    Hence, $$ \\ \\ P\left( A\cap B \right) =P\left( A \right) P\left( B \right)$$ but $$P\left( A \right) \neq P\left( B \right) $$

  • Question 3
    1 / -0
    If $$A$$ and $$B$$ are two events such that $$P\left ( A\cup B \right )= 0.65$$ and $$P\left ( A\cap B \right )= 0.15$$, then $$P\left ( \bar{A} \right )+P\left ( \bar{B} \right )=$$
    Solution
    $$P(A\cup B)=P(A)+P(B)-P(A\cap B)$$
    $$P(A\cup B)=1-P\left ( \bar{A} \right )- 1 - P\left ( \bar{B} \right )-P(A\cap B)$$
    $$0.65=2-P\left ( \bar{A} \right )- P\left ( \bar{B} \right )-0.15$$  Given: $$\left [ {P(A\cup B)=0.65} ; {P(A\cap B)=0.15} \right ] $$
    $$P\left ( \bar{A} \right )+ P\left ( \bar{B} \right )=2-0.65-0.15=1.2$$
  • Question 4
    1 / -0
    An urn contains $$6$$ white and $$4$$ black balls. A fair die whose faces are numbered from $$1$$ to $$6$$ is rolled and number of balls equal to that of the number appearing on the die is drawn from the urn at random. The probability that all those are white is
    Solution
    Required probability $$=$$ probability of drawing 1 White or 2 or 3 or 4 or 5 or 6 White $$=(\dfrac { 1 }{ 6 } *\dfrac { _{ 1 }^{ 6 }{ C } }{ _{ 1 }^{ 10 }{ C } } )+(\dfrac { 1 }{ 6 } *\dfrac { _{ 2 }^{ 6 }{ C } }{ _{ 2 }^{ 10 }{ C } } )+(\dfrac { 1 }{ 6 } *\dfrac { _{ 3 }^{ 6 }{ C } }{ _{ 3 }^{ 10 }{ C } } )+(\dfrac { 1 }{ 6 } *\dfrac { _{ 4 }^{ 6 }{ C } }{ _{ 4 }^{ 10 }{ C } } )+(\dfrac { 1 }{ 6 } *\dfrac { _{ 5 }^{ 6 }{ C } }{ _{ 5 }^{ 10 }{ C } } )=\dfrac { 251 }{ 1260 } $$
    This is closest to $$\dfrac { 1 }{ 5 } $$
  • Question 5
    1 / -0
    Let $$A,B,C$$ be three events such that $$P\left( A \right) =0.3,P\left( B \right) =0.4,P\left( C \right) =0.8,P\left( A\cap B \right) =0.08,$$
    $$P\left( A\cap C \right) =0.28,P\left( A\cap B\cap C \right)  =0.09$$. If $$P\left( A\cup B\cup C \right) \ge 0.75$$, then
    Solution
    Since $$P\left( A\cup B\cup C \right) \ge 0.75$$, therefore
    $$0.75\le P\left( A\cup B\cup C \right) \le 1\\ \Rightarrow 0.75\le P\left( A \right) +P\left( B \right) +P\left( C \right) -P\left( A\cap B \right) -P\left( B\cap C \right) \\ -P\left( A\cap C \right) +P\left( A\cap B\cap C \right) \le 1\\ \Rightarrow 0.75\le 0.3+0.4+0.8-0.08-P\left( B\cap C \right) -0.28+0.09\le 1\\ \Rightarrow 0.75\le 1.23-P\left( B\cap C \right) \le 1\\ \Rightarrow -0.48\le -P\left( B\cap C \right) \le -0.23\\ \Rightarrow 0.23\le P\left( B\cap C \right) \le 0.48$$
  • Question 6
    1 / -0
    A coin is tossed until a head appears or it has been tossed 3 times. Given that head does not appear on the first toss, the probability that the coin is tossed 3 times is
    Solution
    Possible cases: (i) TH, (ii) TTH, (iii) TTT.
    (i): $$\dfrac { 1 }{ 2 } *\dfrac { 1 }{ 2 } =\dfrac { 1 }{ 4 } $$

    (ii): $$\dfrac { 1 }{ 2 } *\dfrac { 1 }{ 2 } *\dfrac { 1 }{ 2 } =\dfrac { 1 }{ 8 } $$ 

    (iii): $$\dfrac { 1 }{ 2 } *\dfrac { 1 }{ 2 } *\dfrac { 1 }{ 2 } =\dfrac { 1 }{ 8 } $$ 

    Hence, probability $$= \dfrac { \dfrac { 1 }{ 8 } +\dfrac { 1 }{ 8 }  }{ \dfrac { 1 }{ 4 } +\dfrac { 1 }{ 8 } +\dfrac { 1 }{ 8 }  } =\dfrac { \dfrac { 1 }{ 4 }  }{ \dfrac { 1 }{ 2 }  } =\dfrac { 1 }{ 2 } $$
  • Question 7
    1 / -0
    A and B be two independent events of a sample space such that $$P(A) = 0.2, P(B) = 0.5$$
    LIST-I                  LIST-II
    A) $$P(B/A)$$             1$$. 0.2$$
    B) $$P(A/B)$$            2 $$. 0.1$$
    C) $$P(A\cap B)$$          3$$  . 0.3$$
    D) $$P(A\cup B)$$         4 $$. 0.6$$
                                    5$$. 0.5$$
    The correct match for List-I from List-II
            A B C D
    Solution
    $$A$$ and $$B$$ both are independent event.

    A)$$P(B/A)=P(B)=0.5$$

    B)$$P(A/B)=P(A)=0.2$$

    C)$$P(A\cup B)=P(A)\times P(B)=0.5\times 0.2=0.1$$

    D)$$P(A\cap B)=P(A)+P(B)-P(A)\times P(B)=0.5+0.2-(0.5\times 0.2)=0.6$$

    $$\therefore\ A B C D \rightarrow  5 1 2 4$$
  • Question 8
    1 / -0
    A letter is taken out at random from the word ASSISTANT and an other from STATISTICS. The probability that they are the same letters is
    Solution
    The common letters are $$A,S,T,I$$
    $$P(S) = \dfrac{3}{9}\times\dfrac{3}{10}$$

    $$P(A) = \dfrac{2}{9}\times\dfrac{1}{10}$$

    $$P(T) = \dfrac{2}{9}\times\dfrac{3}{10}$$

    $$P(I) = \dfrac{1}{9}\times\dfrac{2}{10}$$
    $$\Rightarrow P = P(A)+P(S)+P(T)+P(I)=\dfrac{9}{90}$$
  • Question 9
    1 / -0
    If $${ A }_{ 1 },{ A }_{ 2 },{ A }_{ 3 },...,{ A }_{ n }$$ are any $$n$$ events, then
    Solution
    For any two events $$A$$ and $$B$$, we have 
    $$P\left( A\cup B \right) =P\left( A \right) +P\left( B \right) -P\left( A\cap B \right) \Rightarrow P\left( A\cup B \right) \le P\left( A \right) +P\left( B \right) $$
    Using principle of mathematical induction it can be easily established that
    $$\displaystyle P\left( \bigcup _{ i=1 }^{ n }{ { A }_{ i } }  \right) \le \sum _{ i=1 }^{ n }{ P\left( { A }_{ i } \right)  } $$
  • Question 10
    1 / -0
    $$A,B,C$$ are any three events. If $$P\left( S \right) $$ denotes the probability of $$S$$ happening, then $$P\left( A\cap \left( B\cup C \right)  \right) =$$
    Solution
    $$P\left( A\cap \left( B\cup C \right)  \right) =P\left[ \left( A\cap B \right) \cup \left( A\cap C \right)  \right] \\ =P\left( A\cap B \right) +P\left( A\cap C \right) -P\left[ \left( A\cap B \right) \cap \left( A\cap C \right)  \right] \\ =P\left( A\cap B \right) +P\left( A\cap C \right) -P\left( A\cap B\cap C \right) $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now