Let's denote the defective item by $$D$$ and non-defective by $$\overline { D } $$
$$P\left( A \right) =P\left( D \right) \left\{ P\left( \overline { D } \right) +P\left( D \right) \right\} =\dfrac { 50 }{ 100 } \times 1=\dfrac { 1 }{ 2 }$$
$$P\left( B \right) =\left\{ P\left( \overline { D } \right) +P\left( D \right) \right\} \times P\left( \overline { D } \right) =1\times \dfrac { 50 }{ 100 } =\dfrac { 1 }{ 2 }$$
$$ P\left( C \right) =P\left( DD\cup \overline { D } \overline { D } \right) =P\left( DD \right) +P\left( \overline { D } \overline { D } \right) -P\left( DD\cap \overline { D } \overline { D } \right)$$
$$\Rightarrow P\left( C \right) =\dfrac { 1 }{ 2 } \times \dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 } \times \dfrac { 1 }{ 2 } -0=\dfrac { 1 }{ 2 }$$
Now
$$P\left( A\cap B \right) =P\left( D\overline { D } \right) =\dfrac { 50 }{ 100 } \times \dfrac { 50 }{ 100 } =\dfrac { 1 }{ 4 }$$
$$P\left( B\cap C \right) =P\left( \overline { D } \overline { D } \right) =\dfrac { 1 }{ 2 } \times \dfrac { 1 }{ 2 } =\dfrac { 1 }{ 4 }$$
$$P\left( C\cap A \right) =P\left( DD \right) =\dfrac { 1 }{ 2 } \times \dfrac { 1 }{ 2 } =\dfrac { 1 }{ 4 } $$
Thus, we can see that
$$P\left( A\cap B \right) =P\left( A \right) P\left( B \right) ,P\left( B\cap C \right) =P\left( B \right) P\left( C \right)$$
$$P\left( C\cap A \right) =P\left( C \right) P\left( A \right) $$