Self Studies

Probability Test - 24

Result Self Studies

Probability Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A number is chosen at random from among the 1st 50 natural numbers. The probability that the number chosen is either a prime number or a multiple of 5 is
    Solution
    P(either prime no. or multiple of 5) $$=$$ P(prime no.)$$+$$P(multiple 5)$$ -$$ P(both prime & multiple of 5)
     $$= (15+10-1)/50 = 12/25$$
  • Question 2
    1 / -0
    A lot contains $$50$$ defective and $$50$$ non-defective bulbs. Two bulbs are drawn at random, one at a time, with replacement. The events $$A, B, C$$ are defined as $$A = $$ {the first bulb is defective}, $$B =$$ {the second bulb is non defective}, $$C =$$ {the two bulbs are both defective or both non defective}, then which of the following statements is/are true?(1) $$A, B, C$$ are pair wise independent.(2) $$A, B, C$$ are independent.
    Solution
    Let's denote the defective item by $$D$$ and non-defective by $$\overline { D } $$

    $$P\left( A \right) =P\left( D \right) \left\{ P\left( \overline { D }  \right) +P\left( D \right)  \right\} =\dfrac { 50 }{ 100 } \times 1=\dfrac { 1 }{ 2 }$$

    $$P\left( B \right) =\left\{ P\left( \overline { D }  \right) +P\left( D \right)  \right\} \times P\left( \overline { D }  \right) =1\times \dfrac { 50 }{ 100 } =\dfrac { 1 }{ 2 }$$

    $$ P\left( C \right) =P\left( DD\cup \overline { D } \overline { D }  \right) =P\left( DD \right) +P\left( \overline { D } \overline { D }  \right) -P\left( DD\cap \overline { D } \overline { D }  \right)$$

    $$\Rightarrow P\left( C \right) =\dfrac { 1 }{ 2 } \times \dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 } \times \dfrac { 1 }{ 2 } -0=\dfrac { 1 }{ 2 }$$

    Now 
    $$P\left( A\cap B \right) =P\left( D\overline { D }  \right) =\dfrac { 50 }{ 100 } \times \dfrac { 50 }{ 100 } =\dfrac { 1 }{ 4 }$$

    $$P\left( B\cap C \right) =P\left( \overline { D } \overline { D }  \right) =\dfrac { 1 }{ 2 } \times \dfrac { 1 }{ 2 } =\dfrac { 1 }{ 4 }$$

    $$P\left( C\cap A \right) =P\left( DD \right) =\dfrac { 1 }{ 2 } \times \dfrac { 1 }{ 2 } =\dfrac { 1 }{ 4 } $$

    Thus, we can see that 
    $$P\left( A\cap B \right) =P\left( A \right) P\left( B \right) ,P\left( B\cap C \right) =P\left( B \right) P\left( C \right)$$

    $$P\left( C\cap A \right) =P\left( C \right) P\left( A \right) $$
  • Question 3
    1 / -0
    Given two events A and B, if the odds against Aare 2 to 1, and those in favour of A$$\cup $$B are 3 to1, then
    Solution
    $$Odds\quad against\quad A=P(A^ c)/P(A)=\dfrac { 2 }{ 1 } \\ \Rightarrow \{ 1-P(A)\} /P(A)=2\quad \\ \Rightarrow 1/P(A)-1=2\\ \Rightarrow 1/P(A)=3\\ \Rightarrow P(A)=1/3 \\ \\ Also\quad Odds\quad in\quad favour\quad of\quad A\cup B=\dfrac { P\left( A\cup B \right)  }{ P\left( A\cup B \right) ^ c } =\dfrac { 3 }{ 1 } \\ \Rightarrow \dfrac { P\left( A\cup B \right)  }{ 1-P\left( A\cup B \right)  } =3\\ \Rightarrow \dfrac { 1-P\left( A\cup B \right)  }{ P\left( A\cup B \right)  } =\dfrac { 1 }{ 3 } \\ \Rightarrow \dfrac { 1 }{ P\left( A\cup B \right)  } =1+\dfrac { 1 }{ 3 } =\dfrac { 4 }{ 3 } \\ \Rightarrow P\left( A\cup B \right) =\dfrac { 3 }{ 4 }$$

     since we know that  $$P\left( A\cup B \right) =P\left( A \right) +P\left( B \right) -P\left( A\cap B \right)$$

     Hence putting the values of results obtained above we get $$\Rightarrow \dfrac { 3 }{ 4 } =\dfrac { 1 }{ 3 } +P\left( B \right) -P\left( A\cap B \right)$$
     on rearranging the terms we get $$\Rightarrow P\left( B \right) =P\left( A\cap B \right) +\dfrac { 5 }{ 12 } $$
     $$P\left( A\cap B \right) \quad can\quad never\quad be\quad equal\quad to\quad P\left( B \right) \\ \Rightarrow \quad \dfrac { 5 }{ 12 } \le P\left( B \right) \le \dfrac { 5 }{ 12 } +P\left( A \right) $$

    $$ 0\le P\left( A\cap B \right) \le P\left( A \right) \\ \Rightarrow \dfrac { 5 }{ 12 } \le P\left( B \right) \le \dfrac { 3 }{ 4 }  $$
  • Question 4
    1 / -0
    Bulbs are packed in cartons each containing 40 bulbs. Seven hundred cartons were examined for defective bulbs and the results are given in the following table:

    No. of defective bulbs
    0
    1
    2
    3
    4
    5
    6
    more than 6
    frequency
    400
    180
    48
    41
    18
    8
    3
    2

    One carton was selected at random. The probability of defective bulbs being less than 4 is
    Solution
    $$P(\text {carton having defective bulbs less than 4})$$

    $$ = 1-P(\text {carton having defective bulbs greater than or equal to 4})$$

    $$= 1-\cfrac {18+8+3+2}{700} = 1-\cfrac {31}{700} = \cfrac {669}{700}$$
  • Question 5
    1 / -0
    The probability of raining on day $$1$$ is $$0.2$$ and on day $$2$$ is $$0.3$$. The probability of raining on both the days is
    Solution

    $${\textbf{Step -1: Calculate the probability of raining on both day.}}$$ 

                      $${\text{The probability of raining on day1, P(1) = 0}}{\text{.2}}$$  

                      $${\text{The Probability of raining on day 2, P(2) = 0}}{\text{.3}}$$

                      $${\text{Raining on both day are independent of each other.}}$$

                      $${\text{So, the probability of raining on both days =  P}}\left( {1 \cap 2} \right)$$

                                                                                                      $$ = {\text{P(1)}}{\text{.P(2)}}$$ 

                                                                                                      $$ = 0.2 \times 0.3$$

                                                                                                      $$ = 0.06$$ 

    $$\textbf{Hence, option C is correct.}$$

  • Question 6
    1 / -0
    The probability that atleast one of the events $$A, B$$ happens is $$0.6$$. If probability of their simultaneously happening is $$0.5$$, then $$P(\bar{A})+P(\bar{B})=$$
    Solution
    $$P(A\cup B)= 0.6\\ P(A\cap B)= 0.5$$
    $$ P(\overline { A } )+P(\overline { B } )=1-P(A)+1-P(B) $$
    $$ =2-\{ P(A\cup B)+P(A\cap B)\}= 0.9$$
  • Question 7
    1 / -0
    Bulbs are packed in cartons each containing 40 bulbs. Seven hundred cartons were examined for defective bulbs and the results are given in the following table:

    No. of defective bulbs
    0
    1
    2
    3
    4
    5
    6
    more than 6
    frequency
    400
    180
    48
    41
    18
    8
    3
    2

    One carton was selected at random. What is the probability that it has more than 1 defective bulbs?
    Solution
    To find the number of cartons with no. of defective bulbs from 2 to 6, we can remove the number of cartons with no. of defective bulbs 0 or 1 from the whole set

    No. of cartoons with 0 or 1 defective bulb $$= 400+180 = 580$$

    So, $$P\text {(carton with 2 to 6 defective bulbs)}$$

    $$ = 1-P\text{(cartoon with 0 or 1 defective bulb)}$$

    $$=1-\cfrac {580}{700} $$

    $$= \cfrac {120}{700} $$

    $$= \cfrac {60}{350}$$
  • Question 8
    1 / -0
    The probabilites of three events $$A,B$$ and $$C$$ are $$P\left( A \right) =0.6,P\left( B \right) =0.4$$ and $$P\left( C \right) =0.5$$. If $$P\left( A\cup B \right) =0.8,P\left( A\cap C \right) =0.3,P\left( A\cap B\cap C \right) =0.2$$ and $$P\left( A\cup B\cup C \right) \ge 0.85$$, then
    Solution
    Given $$P\left( A \right) =0.6,P\left( B \right) =0.4$$ and $$P\left( C \right) =0.5$$. If $$P\left( A\cup B \right) =0.8,P\left( A\cap C \right) =0.3,P\left( A\cap B\cap C \right) =0.2$$ and $$P\left( A\cup B\cup C \right) \ge 0.85$$

    $$P\left( A\cap B \right) =P\left( A \right) +P\left( B \right) -P\left( A\cup B\right) =0.6+0.4-0.8=0.2$$

    $$P\left( A\cup B\cup C \right) =P\left( A \right) +P\left( B \right) +P\left( C \right) -P\left( A\cap C \right) +P\left( A\cap B\cap C \right) -P\left( A\cap B \right) -P\left( B\cap C \right) $$

    $$P\left( A\cup B\cup C \right) =0.6+0.4 +0.5 -0.3+0.2 -0.2 -P\left( B\cap C \right) $$

    $$\Rightarrow P\left( B\cap C \right) =1.2-P\left( A\cup B\cup C \right) $$     ...(1)

    $$\because 0.85\le P\left( A\cup B\cup C \right) \le 1$$

    $$  \Rightarrow P\left( B\cap C \right) \le 1.2-0.85$$  [From (1)]

    and $$P\left( B\cap C \right) \ge 1.2-1\Rightarrow 0.2\le P\left( B\cap C \right) \le 0.35.$$
  • Question 9
    1 / -0
    If events $$A$$ and $$B$$ are independent and $$P(A)=0.15, P(A\cup B)=0.45$$, then $$P(B)=$$
    Solution
    Given, $$P(A) = 0.15$$, $$P(A \cup B)$$ = 0.45
    We have $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
    and $$P(A \cap B) = P(A).P(B)$$
    Therefore, $$0.45 = 0.15 +P(B) - 0.15 P(B) $$
    $$\Rightarrow 0.30 = 0.85 P(B)$$
    $$\Rightarrow P(B) =$$ $$\dfrac{30}{85}$$ $$=$$ $$\dfrac{6}{17}$$
  • Question 10
    1 / -0
    If $$\displaystyle \frac{1-3p}{2},\frac{(1+4p)}{3},\frac{1+p}{6}$$ are the probabilities of three mutually exclusive and exhaustive events,then the set of all values of p is
    Solution
    For mutually exclusive and exhaustive events,
    $$ \displaystyle 0\leq\frac{1-3p}{2}\leq 1,0\leq \frac{1+4p}{3}\leq 1 ,0\leq \frac{1+p}{6}\leq 1$$ and $$\displaystyle 0\leq  \frac{1-3p}{2}+ \frac{1+4p}{3}+\frac{1+p}{6} \leq 1$$
    $$\Rightarrow  \displaystyle 0\leq 1-3p \leq 2,0\leq 1+4p\leq 3 ,0\leq 1+p\leq 6$$ and $$\displaystyle 0\leq  \frac{3(1-3p)+2(1+4p)+1+p}{6} \leq 1$$
    $$\Rightarrow  \displaystyle -1\leq -3p \leq 1,-1\leq 4p\leq 2 ,-1\leq p\leq 5$$ and $$\displaystyle 0\leq 1\leq 

    1$$
    $$\Rightarrow  \displaystyle -\frac{1}{3}\leq p \leq \frac{1}{3} ,-\frac{1}{4}\leq p\leq \frac{1}{2} ,-1\leq p\leq 5$$
    Now taking intersection of above we get $$p\in \left[-\cfrac{1}{4}, \cfrac{1}{3}\right]$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now