$$P\left( A\cup B \right) \ge max\left\{ P(A),P(B)
\right\} $$
Here $$P(A)=\dfrac { 3 }{ 4 } ,P(B)=\dfrac { 5 }{ 8 } $$
$$\Rightarrow P\left( A\cup B \right) \ge \dfrac { 3 }{ 4 } $$
So, option A is correct.
$$P\left( A\cap B \right) \le min\left\{ P(A),P(B) \right\} \\
\Rightarrow P\left( A\cap B \right) \le \dfrac { 5 }{ 8 } $$ ......(i)
We know $$ P\left(
A\cup B \right) =P(A)+P(B)-P\left( A\cap B \right) $$
$$\Rightarrow P\left( A\cap B \right)
=P(A)+P(B)-P\left( A\cup B \right) \\ \Rightarrow P\left( A\cap B \right) \ge
P(A)+P(B)-1\\ \Rightarrow P\left( A\cap B \right) \ge \dfrac { 3 }{ 4 } +\dfrac
{ 5 }{ 8 } -1\\ \Rightarrow P\left( A\cap B \right) \ge \dfrac { 3 }{ 8 }$$ .......(ii)
From (i) and (ii), we have
$$\dfrac { 3 }{ 8 } \le P\left( A\cap B \right) \le \dfrac { 5 }{ 8 } $$
So, option C is correct.
$$\dfrac { 3 }{ 8 } \le P\left( A\cap B \right) \le \dfrac { 5 }{ 8 } \\
\Rightarrow -\dfrac { 5 }{ 8 } \le -P\left( A\cap B \right) \le -\dfrac { 3 }{
8 } $$
$$\Rightarrow P(B)-\dfrac { 5 }{ 8 } \le P(B)-P\left( A\cap B \right) \le P(B)-\dfrac
{ 3 }{ 8 } \\ \Rightarrow \dfrac { 5 }{ 8 } -\dfrac { 5 }{ 8 } \le P\left( \overset { \_
}{ A } \cap B \right) \le \dfrac { 5 }{ 8 } -\dfrac { 3 }{ 8 } \\ \Rightarrow 0\le
P\left( \overset { \_ }{ A } \cap B \right) \le \dfrac { 1 }{ 4 } \\ \Rightarrow
P\left( \overset { \_ }{ A } \cap B \right) \le \dfrac { 1 }{ 4 } $$