Self Studies

Probability Test - 40

Result Self Studies

Probability Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If A & B are independent events such that $$P(B) = \dfrac{2}{7}, P(A\cup \overline{B})=0.8$$, then $$P(A)$$ is equal to
    Solution
    $$P(A\cup \overline{B}) =0.8$$
    $$P(B) = \cfrac{2}{7}$$
    $$\Rightarrow P(A)+P(\overline{B})-P(A\cap \overline{B})=0.8$$ & $$P(\overline{B})=1-\cfrac{2}{7}$$ 
    $$\Rightarrow P(A)+P(\overline{B})-P(A)P(\overline{B})=0.8$$ & $$P(\overline{B})=\cfrac{5}{7}$$

    $$\Rightarrow P(A)+\cfrac{5}{7}-\cfrac{5}{7}P(A)=0.8\Rightarrow \cfrac{2}{7}P(A) = \cfrac{3}{35}$$

    $$\Rightarrow P(A) = 0.3$$   
  • Question 2
    1 / -0
    If $$P(A) = \cfrac{1}{4}, P(\overline{B})=\cfrac{1}{2}$$ and $$P(A\cup B) = \cfrac{5}{9}$$, then $$P(A/B)$$ is
    Solution
    We have,
    $$P(A\cup B) =\cfrac{5}{9}$$
    $$\Rightarrow P(A)+P(B)-P(A\cap B)=\cfrac{5}{9}$$
    $$\Rightarrow \cfrac{1}{4}+\cfrac{1}{2}-P(A\cap B) = \cfrac{5}{9}$$
    $$\Rightarrow P(A\cap B)=\cfrac{7}{36}$$
    $$\Rightarrow P(B)P(A/B)=\cfrac{7}{36}$$
    $$\Rightarrow \cfrac{1}{2}\times P(A/B)=\cfrac{7}{36}\Rightarrow P(A/B) =\cfrac{7}{18}$$
  • Question 3
    1 / -0
    For 3 events A, B and C, P(exactly one of the events A or B occurs) = P(exactly one of the events B or C occurs) = P(exactly one of the events C or A occurs) = p & P (all the three events occurs simultaneously) = $$p^2$$. Where $$ o < p < \frac{1}{2}$$. then the probability of at lest one of three events, A, B & C occurring is 
    Solution
    $$P(A) -P(B) -2P(A\cap B) = p$$         ...(i)
    $$P(B) + P(C) -2P(B\cap C) = p$$       ...(ii)
    $$P(C) + P(A) -2P(C\cap A) = p$$      ...(iii)
    and, $$P(A \cap B\cap C) = p^2$$      ...(iv)
    Adding (i), (ii) and (iii), we get
    $$2[P(A)+P(B)+P(C)+P(A\cap B)-P(B\cap C)-P(A\cap C)]=3p$$
    $$\Rightarrow P(A)+P(B)+P(C)-P(A\cap B)-P(B\cap C)-P(A\cap C) = \cfrac{3p}2$$
    $$\therefore $$ Required probability
    $$=P(A\cup B \cup C)$$
    $$=P(A)+P(B)+P(C)-P(A\cap B)-P(B\cap C)-P(A\cap C)+P(A\cap B\cap C)$$
    $$=\cfrac{3p}{2}+p^2=\cfrac{3p+2p^2}{2}$$
  • Question 4
    1 / -0
    'X' speaks truth in $$60%$$ & 'y' is $$50%$$ of the cases. The probability that they contradict each other while narrating the same incident, is
    Solution
    Given:
    Probability of $$X$$ speaking truth, $$P(X)= 60\%=0.6$$
    Probability of $$Y$$ speaking truth, $$P(Y) = 50\%=0.5$$
    To find:
    Probability of contradiction.
    $$P(X')=0.4, P(Y')=0.5$$
    Contradiction occurs when X speaks truth and Y speaks false or X speaks false and Y speaks truth. And as all the events are independent, 
    i.e.,, Required probability = $$P(X\cap Y')+P(X'\cap Y)=P(X)\times P(Y')+P(X')\times P(Y)$$
    $$\implies = 0.6\times 0.5+0.4\times 0.5=0.3+0.2=0.5=\dfrac 12$$
  • Question 5
    1 / -0
    An integer is chosen at random from first 200 positive integers. The probability that the integer chosen is divisible by 6 or 8 is 
    Solution
    One integer can be chosen out of $$200$$ integer in $$^{200}C_1$$ ways.
    Let A be event than an integer selected is divisible by 6 and B that it is divisible by 8. 
    Then, $$P(A) = \dfrac{33}{200}, P(B)=\dfrac{25}{200}$$ and $$P(A\cap B) = \dfrac{8}{192}$$
    $$\therefore$$ Required probability $$=P(A \cup B)$$
    $$=P(A)+P(B)-P(A\cap B)$$$$=\cfrac{33}{200}+\cfrac{25}{200}-\cfrac{8}{192}=\cfrac{1}{4}$$ 
  • Question 6
    1 / -0
    The probability of simultaneous occurrence of 2 events A & B is $$p$$. If the probability that exactly one of A, B occurs is $$q$$, then which of the following alternatives is INCORRECT?  
    Solution
    $$P(A\cap B) =p$$ and $$P(A) +P(B)-2P(A\cap B)=q$$
    $$\Rightarrow P(A)+P(B)-2p=q$$
    $$\Rightarrow P(A)+P(B)=2p-q$$
    $$\Rightarrow 1-P(\overline{A})+1-P(\overline{B})=2p+q$$
    $$\Rightarrow P(\overline{A})+P(\overline{B})=2-2p-q$$
    So, alternative (b) is correct.
    Now, 
    $$P\{(A\cap B)/(A\cup B)\} = \cfrac{P[(A\cap B)\cap (A\cup B)]}{P(A\cup B)}$$
    $$\Rightarrow P\{(A\cap B)/(A\cup B)\} = \cfrac{P(A\cap B)}{P(A\cup B)}$$
    $$\Rightarrow P\{(A\cap B)/(A\cup B)\} = \cfrac{P[(A\cap B)}{P(A)+P(B)-P(A\cap B)}$$
    $$\Rightarrow P\{(A\cap B)/(A\cup B)\} = \cfrac{P}{2p+q-p} = \cfrac{p}{p+q}$$
    So, alternative (c) is correct.
    Finally,
    $$P(\overline{A}\cap \overline{B}) = P(\overline{A\cup B}) = 1-P(A\cup B)$$
    $$\Rightarrow P(\overline{A}\cap \overline{B}) = 1-[P(A)+P(B)-P(A\cap B)]$$
    $$\Rightarrow P(\overline{A}\cap \overline{B}) = 1-[2p+q-p]=1-p-q$$
    So, alternative (d) is correct.
    Hence, alternative (a) is incorrect.
  • Question 7
    1 / -0
    If $$A$$ and $$B$$ are two event such that $$P(A)=\cfrac{3}{4}$$ and $$P(B)=\cfrac{5}{8}$$, then
    Solution

    $$P\left( A\cup B \right) \ge max\left\{ P(A),P(B) \right\} $$

    Here $$P(A)=\dfrac { 3 }{ 4 } ,P(B)=\dfrac { 5 }{ 8 } $$

    $$\Rightarrow P\left( A\cup B \right) \ge \dfrac { 3 }{ 4 } $$

    So, option A is correct.

    $$P\left( A\cap B \right) \le min\left\{ P(A),P(B) \right\} \\ \Rightarrow P\left( A\cap B \right) \le \dfrac { 5 }{ 8 } $$     ......(i)

    We know $$ P\left( A\cup B \right) =P(A)+P(B)-P\left( A\cap B \right) $$

    $$\Rightarrow  P\left( A\cap B \right) =P(A)+P(B)-P\left( A\cup B \right) \\ \Rightarrow P\left( A\cap B \right) \ge P(A)+P(B)-1\\ \Rightarrow P\left( A\cap B \right) \ge \dfrac { 3 }{ 4 } +\dfrac { 5 }{ 8 } -1\\ \Rightarrow P\left( A\cap B \right) \ge \dfrac { 3 }{ 8 }$$     .......(ii)

    From (i) and (ii), we have

    $$\dfrac { 3 }{ 8 } \le P\left( A\cap B \right) \le \dfrac { 5 }{ 8 } $$

    So, option C is correct.

    $$\dfrac { 3 }{ 8 } \le P\left( A\cap B \right) \le \dfrac { 5 }{ 8 } \\ \Rightarrow -\dfrac { 5 }{ 8 } \le -P\left( A\cap B \right) \le -\dfrac { 3 }{ 8 } $$

    $$\Rightarrow  P(B)-\dfrac { 5 }{ 8 } \le P(B)-P\left( A\cap B \right) \le P(B)-\dfrac { 3 }{ 8 } \\ \Rightarrow \dfrac { 5 }{ 8 } -\dfrac { 5 }{ 8 } \le P\left( \overset { \_  }{ A } \cap B \right) \le \dfrac { 5 }{ 8 } -\dfrac { 3 }{ 8 } \\ \Rightarrow 0\le P\left( \overset { \_  }{ A } \cap B \right) \le \dfrac { 1 }{ 4 } \\ \Rightarrow P\left( \overset { \_  }{ A } \cap B \right) \le \dfrac { 1 }{ 4 } $$

  • Question 8
    1 / -0
    For any 2 events A and B in a sample space which one of the following is incorrect?
    Solution
    Consider $$2$$ events $$A$$  $$\xi$$  $$B$$
    $$P\left( \dfrac { A }{ B }  \right)\ge\dfrac{P(A)+P(B)-1}{P(B)},P(B)\neq 0,$$ is always true.
    This condition is not correct.
    $$P\left( \dfrac { A }{ B }  \right)=\dfrac{Number\;of\;elementary\;events\;favorable\;A\cap B}{Number\;of\;elementary\;events\;favorable\;to\;B}$$

    $$P\left( \dfrac { A }{ B }  \right)=\dfrac{n(A\cap B)}{n(B)}=\dfrac{\dfrac{n(A\cap B)}{n(s)}}{\dfrac{n(B)}{n(s)}}$$

    $$\therefore P\left( \dfrac { A }{ B }  \right)=\dfrac{(A\cap B)}{(B)}$$
    Similarly $$P\left( \dfrac { B }{ A }  \right)=\dfrac{(A\cap B)}{(A)}$$
    Hence, the answer is $$P\left( \dfrac { A }{ B }  \right)\ge\dfrac{P(A)+P(B)-1}{P(B)},P(B)\neq 0,$$ is always true.
  • Question 9
    1 / -0
    A coin is tossed and a six-sided die is rolled. Find the probability of getting a head on the coin and a $$6$$ on the die.
    Solution
    A coin is tossed and a six-sided die is rolled.

    We have to find the probability of getting head on the coin and a $$6$$ on the die.

    Probability of getting head in the coin is $$\dfrac{1}{2}$$.

    Probability of getting $$6$$ on the die is $$\dfrac{1}{6}$$.

    Probability of getting head on the coin and a $$6$$ on the die is $$\dfrac{1}{2} \times \dfrac{1}{6}= \dfrac{1}{12}$$
  • Question 10
    1 / -0
    If $$A$$ and $$B$$ are arbitrary events, then
    Solution
    If $$A$$ and $$B$$ are arbitrary events, we know that 
    $$P(A\cup B)=P(A)+P(B)-P(A\cap B)$$
    SInce $$P(A\cup B)$$ can be written as $$P(A)+P(B)$$ $$-$$ some positive quantity, we can say that 
    $$P(A\cup B)\leq P(A)+P(B)$$..
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now