Self Studies

Relations and Functions Test - 20

Result Self Studies

Relations and Functions Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of relations from $$ A=\left \{ 1,2,3 \right \} $$ to $$B = \left \{ 4,6,8,10 \right \}$$ is
    Solution
    $$n\left ( B \right )=4$$
    $$n\left ( A \right )=3$$
    Therefore there exists $$2^{3 \times 4}$$ relations from $$A$$ to $$B$$
    i.e $$2^{12}$$ relations
  • Question 2
    1 / -0
    If $$f:R\rightarrow R$$ is defined by $$f(x)=x^{2}-3x+2$$, then $$f(x^{2}-3x-2)=$$
    Solution
    $$f\left ( x^{2}-3x-2 \right )=\left ( x^{2}-3x+2 \right )^{2}-3\left ( x^{2}-3x+2 \right )+2$$
    $$x^{4}+9x^{2}+4-6x^{3}-12x+4x^{2}-3x^{2}+9x-6+2$$
    $$=x^{4}-6x^{3}+2x^{2}+21x+12$$
  • Question 3
    1 / -0
    $$f(1)=1,n \geq 1\Rightarrow f(n+1)=2f(n)+1$$ then $$f(n)=$$    
    Solution
    $$f(n+1)=2f(n)+1$$        .....(1)
    Substitute $$n=1$$ in (1)
    $$f(2)=2f(1)+1=3=2^2-1$$

    Substitute $$n=2$$ in (1)
    $$f(3)=2f(2)+1$$
    $$\Rightarrow f(3)=7=2^3-1$$

    Substitute $$n=3$$ in (1)
    $$f(4)=2f(3)+1$$
    $$\Rightarrow f(4)=15=2^{4}-1$$

    So, for all $$n \ge 1$$, $$f(n)=2^{n}-1$$
  • Question 4
    1 / -0
    If $$f=\{(a,0), (b,-2), (c,3)\}$$, $$g=\{(a,-2),(b,0),(c,1)\}$$ then $$\dfrac{f}{g} = $$
    Solution
    $$f=\{(a,0),(b,-2),(c,3)\}$$ and $$g=\{(a,-2),(b,0),(c,1)\}$$

    Implies

    $$f(a)=0$$

    $$f(b)=-2$$

    $$f(c)=3$$

    Similarly

    $$g(a)=-2$$

    $$g(b)=0$$

    $$g(c)=1$$

    Consider a function

    $$h(x)=\dfrac{f(x)}{g(x)}$$

    Then

    $$h(a)=\dfrac{f(a)}{g(a)}=\dfrac{0}{-2}=0$$ ...(i)

    $$h(b)=\dfrac{f(b)}{g(b)}=\dfrac{-2}{0}=\infty$$...(ii)

    $$g(c)=\dfrac{f(c)}{g(c)}=\dfrac{3}{1}=3$$...(iii)

    From i ii and iii

    $$h=\{(a,0),(c,3)\}$$

    Or 

    $$\dfrac{f}{g}=\{(a,0),(c,3)\}$$

  • Question 5
    1 / -0
    $$f(x)= \sin x $$ and $$g(x)= \sec x$$ then $$\dfrac{f(\pi )-f\left ( \dfrac{3\pi }{2} \right )+f(0)}{g(\pi )+g(0)+g\left ( \dfrac{\pi }{3} \right )}$$
    Solution
    $$f\left ( \pi  \right )=0;f\left ( \dfrac{3\pi }{2} \right )=-1;f\left ( 0 \right )=0$$
    $$g\left ( \pi  \right )=-1; g\left ( 0 \right )=1; g\left ( \dfrac{\pi }{3} \right )=2$$
    $$\therefore\dfrac{f\left ( \pi  \right )-f\left ( \dfrac{3\pi }{2} \right )+f\left ( 0 \right )}{g\left ( \pi  \right )+g\left ( 0 \right )+g\left ( \dfrac{\pi }{3} \right )}$$ $$=\dfrac{1}{2}$$
  • Question 6
    1 / -0
    If $$f(x)=x+1$$ and $$g(x)=x^{2}+1 $$ then $$ \dfrac{f+g}{fg}(0)=$$
    Solution
    $$f(0)=g(0)=1$$
    $$f(x)+g(x)=(f+g)(x)$$
    $$\Rightarrow \dfrac{1+1}{1.1}=2$$
  • Question 7
    1 / -0
    If $$f (x)$$ is a polynomial function such that $$f(x)f\left(\dfrac{1}{x}\right)=f(x)+f\left(\dfrac{1}{x}\right)$$ and $$f(3)= -80$$ then $$f(x)$$ is equal to:
    Solution
    $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )=f\left ( x \right )+f\left ( \frac{1}{x} \right )$$
    $$\Rightarrow $$   $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )-f\left ( x \right )=f\left ( \frac{1}{x} \right )$$
    $$\Rightarrow $$   $$\displaystyle f\left ( x \right )=\frac{f\left ( 1/x \right )}{f\left ( 1/x \right )-1}$$          (i)
    Also, $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )=f\left ( x \right )+f\left ( \frac{1}{x} \right )$$
    $$\Rightarrow $$   $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )-f\left ( \frac{1}{x} \right )=f\left ( x \right )$$
    $$\Rightarrow $$   $$\displaystyle f\left ( \frac{1}{x} \right )=\frac{f\left ( x \right )}{f\left ( x \right )-1}$$          (ii)
    On multiplying Eqs. (i) and (ii), we get,
    $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )=\frac{f\left ( 1/x \right )f\left ( x \right )}{\left \{ f\left ( 1/x \right )-1 \right \}\left \{ f\left ( x \right )-1 \right \}}$$
    $$\Rightarrow $$   $$\displaystyle \left ( f\left ( \frac{1}{x} \right )-1 \right )\left ( f\left ( x \right )-1 \right )=1$$          (iii)
    Since, $$f(x)$$ is polynomial function, so $$(f(x)-1)$$ and $$\displaystyle f\left ( \frac{1}{x} \right )-1$$ are reciprocals of each other. Also, $$x$$ and $$\displaystyle \frac{1}{x}$$ are reciprocals of each other.
    Thus, Eq. (iii) can hold only when
    $$f\left ( x \right )-1=\pm x^{n}$$,          where $$n\in R$$
    $$\therefore $$   $$f\left ( x \right )=\pm x^{n}+1$$          but $$f(3)=-80$$
    $$\Rightarrow $$   $$\pm 3^{n}+1=-80$$   $$\Rightarrow $$   $$3^{n}=81$$
    $$\Rightarrow $$   $$3^{n}=3^{4}$$          $$\left ( \because 3^{n}> 0 \right )$$
    $$\Rightarrow $$   $$n=4$$
    So, $$f\left ( x \right )=-x^{4}+1$$
  • Question 8
    1 / -0
    If $$f(x)=3x+1, g(x)=x^{3}+2,$$ then $$ \dfrac{f+g}{fg}(0)=$$
    Solution
    $$f(0)=1;$$
    $$g(0)=2$$
    $$(f+g)(x)=f(x)+g(x)$$, $$fg(x)=f(x)g(x)$$
    $$\dfrac{1+2}{1.2}=\dfrac{3}{2}$$
  • Question 9
    1 / -0
    If $$f(x)$$ is a polynomial in $$x$$ $$(>0)$$ satisfying the equation $$f(x)+f\left ( \dfrac{1}{x} \right )=f(x)f\left ( \dfrac{1}{x} \right )$$ and $$f(2)=9,$$ then $$f(3)=$$
    Solution
    Suppose $$f(x)$$ is a polynomial of degree 'n'.
    $$ \displaystyle f(x)=a_{ 0 }+a_{ 1 }x+........{ a }_{ n-1 }{ x }^{ n-1 }+a_{ n }x^{ n }\\ \displaystyle \Rightarrow f\left( \frac { 1 }{ x }  \right) ={ a }_{ 0 }+\frac { { a }_{ 1 } }{ x } +\frac { { a }_{ 2 } }{ { x }^{ 2 } } +........+\frac { { a }_{ n-1 } }{ { x }^{ n-1 } } +\frac { { a }_{ n } }{ { x }^{ n } } $$

    Given that $$ \displaystyle f\left ( x \right )+f\left ( \frac{1}{x} \right )=f\left ( x \right ).f \left(\frac{1}{x} \right)$$
    $$ \displaystyle \Rightarrow \left( a_{ 0 }+a_{ 1 }x+........{ a }_{ n-1 }{ x }^{ n-1 }+a_{ n }x^{ n } \right) +\left( { a }_{ 0 }+\frac { { a }_{ 1 } }{ x } +\frac { { a }_{ 2 } }{ { x }^{ 2 } } +........+\frac { { a }_{ n-1 } }{ { x }^{ n-1 } } +\frac { { a }_{ n } }{ { x }^{ n } }  \right) \\  \displaystyle =\left( a_{ 0 }+a_{ 1 }x+........{ a }_{ n-1 }{ x }^{ n-1 }+a_{ n }x^{ n } \right) \left( { a }_{ 0 }+\frac { { a }_{ 1 } }{ x } +\frac { { a }_{ 2 } }{ { x }^{ 2 } } +........+\frac { { a }_{ n-1 } }{ { x }^{ n-1 } } +\frac { { a }_{ n } }{ { x }^{ n } }  \right) $$
    .
    Comparing the coefficients of $$x^n$$ on both sides, we get $$a_n=a_na_0 \Rightarrow a_0=1$$ ( $$\because a_n \neq 0$$)
    Similarly comapring the coefficients of $$x^{n-1}$$ on both sides, we get $$a_{n-1}= a_{n}a_{1}+a_{n-1}a_{0} \Rightarrow a_na_1=0 \Rightarrow a_1 = 0$$
    ($$ \because a_0=1$$)
    Similarly comparing the coefficients of $$x^{n-2},\; x^{n-3},.....x$$, we get 
    $$ a_2=a_3=a_4=..........a_{n-1}=0$$
    $$\Rightarrow f\left ( x \right )=a_nx^{n}+1$$
    $$ \displaystyle \Rightarrow f\left( \frac { 1 }{ x }  \right) =\frac { { a }_{ n } }{ { x }^{ n } } +1\\ \displaystyle \Rightarrow \left( a_{ n }x^{ n }+1 \right) +\left( \frac { { a }_{ n } }{ { x }^{ n } } +1 \right) =\left( a_{ n }x^{ n }+1 \right) \left( \frac { { a }_{ n } }{ { x }^{ n } } +1 \right) $$
    Comparing the constant terms on both sides we get $$ 2= a_n^{2}+1 \Rightarrow a_n = \pm 1$$
     $$ \Rightarrow \boxed { f(x)=\pm x^{ n }+1 } $$
    Given 
    $$f\left ( 2 \right )=9\Rightarrow f\left ( 2 \right )= \pm 2^{n}+1=9$$
    $$\Rightarrow 2^{n}=8$$ ( $$ \because -ve$$ is not possible)
    $$\Rightarrow n=3$$
    $$f\left ( x \right )=x^{3}+1$$
    $$\therefore f\left ( 3 \right )=27+1=28$$
  • Question 10
    1 / -0
    If $$f(x)=x^{2}, g(x)=x^{2}-5x+6$$, then $$g(2)+g(3)+g(0)-f(0)-f(1)-f(-2)$$
    Solution
    $$g(2)=g(3)=0  ; g (0)=6$$
    $$f(0)=0;f(1)=1;f(2)=4$$
    $$\Rightarrow 6-1-4=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now