$$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )=f\left ( x \right )+f\left ( \frac{1}{x} \right )$$
$$\Rightarrow $$ $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )-f\left ( x \right )=f\left ( \frac{1}{x} \right )$$
$$\Rightarrow $$ $$\displaystyle f\left ( x \right )=\frac{f\left ( 1/x \right )}{f\left ( 1/x \right )-1}$$ (i)
Also, $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )=f\left ( x \right )+f\left ( \frac{1}{x} \right )$$
$$\Rightarrow $$ $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )-f\left ( \frac{1}{x} \right )=f\left ( x \right )$$
$$\Rightarrow $$ $$\displaystyle f\left ( \frac{1}{x} \right )=\frac{f\left ( x \right )}{f\left ( x \right )-1}$$ (ii)
On multiplying Eqs. (i) and (ii), we get,
$$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )=\frac{f\left ( 1/x \right )f\left ( x \right )}{\left \{ f\left ( 1/x \right )-1 \right \}\left \{ f\left ( x \right )-1 \right \}}$$
$$\Rightarrow $$ $$\displaystyle \left ( f\left ( \frac{1}{x} \right )-1 \right )\left ( f\left ( x \right )-1 \right )=1$$ (iii)
Since, $$f(x)$$ is polynomial function, so $$(f(x)-1)$$ and $$\displaystyle f\left ( \frac{1}{x} \right )-1$$ are reciprocals of each other. Also, $$x$$ and $$\displaystyle \frac{1}{x}$$ are reciprocals of each other.
Thus, Eq. (iii) can hold only when
$$f\left ( x \right )-1=\pm x^{n}$$, where $$n\in R$$
$$\therefore $$ $$f\left ( x \right )=\pm x^{n}+1$$ but $$f(3)=-80$$
$$\Rightarrow $$ $$\pm 3^{n}+1=-80$$ $$\Rightarrow $$ $$3^{n}=81$$
$$\Rightarrow $$ $$3^{n}=3^{4}$$ $$\left ( \because 3^{n}> 0 \right )$$
$$\Rightarrow $$ $$n=4$$
So, $$f\left ( x \right )=-x^{4}+1$$