Self Studies

Relations and Functions Test - 22

Result Self Studies

Relations and Functions Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=\dfrac{1}{2}(3^{x}+3^{-x}),  g(x)=\dfrac{1}{2}(3^{x}-3^{-x})$$  then $$ f(x)g(y)+f(y)g(x)$$ is equal to
    Solution
    $$\Rightarrow$$$$f(x)g(y)=\dfrac{1}{4}(3^{x}+3^{-x})(3^{y}-3^{-y})$$

    $$\Rightarrow$$$$\dfrac{1}{4}(3^{x+y}+3^{y-x}-3^{x-y}-3^{-x-y})$$

    $$\Rightarrow$$$$f(y)g(x)=\dfrac{1}{4}(3^{x+y}-3^{y-x}+3^{x-y}-3^{-x-y})$$

    $$\Rightarrow$$$$f(x)g(y)+f(y)g(x)=\dfrac{1}{4}\times 2(3^{x+y}-3^{-x-y})$$

    $$\Rightarrow$$$$\dfrac{1}{2}(3^{x+y}-3^{-(x+y)})$$

    $$\Rightarrow$$$$g(x+y)$$
  • Question 2
    1 / -0
    If relation R$$=\left \{ (x,  x+2)  :  x  \in  N, 1 \leq  x <4 \right \}$$ then R is
    Solution
    We have $$x\in N, 1\le x<4$$
    $$\Rightarrow x =1,2,3$$
    Hence $$R =\{(1,3),(2,4),(3,5)\}$$
  • Question 3
    1 / -0

    Directions For Questions

    Consider the function $$y=\frac{x^{2}+x+d}{x^{2}+2x+d}$$

    ...view full instructions

    If the range of function is $$\left [ \frac{5}{6},\frac{3}{2} \right ]$$, then the value of d is
  • Question 4
    1 / -0
    If $$A=\{b,c,d\}$$ and $$B=\{x,y\}$$. Find which of the following are elements of $$A \times A$$.
    Solution
    $$A\times A \Rightarrow$$ the first element will be from $$A$$ and the second element will also be from $$A$$.
    $$A \times A = \left\{\{b,b\}, \{b,c\}, \{b,d\},\{c,b\},\{c,c\},\{c,d\},\{d,b\},\{d,c\},\{d,d\}\right\}$$
    Thus, all the options $$A,B$$ and $$C$$ are the elements of $$A \times A$$
  • Question 5
    1 / -0
    The number of different solutions to the equation $$f (20x -11/ x) = 0$$ cannot be

    Solution
    Let $$f (\alpha)=0 $$
    $$\Rightarrow 20x -11/ x=\alpha$$
    $$\Rightarrow 20x^2 - \alpha x -11 = 0$$
    $$\Rightarrow x=\frac{\alpha \pm \sqrt{\alpha ^2+880}}{40}$$
    so, $$x = x_1$$ & $$x_2$$ ; no. of solution will be 2 ; no. of solutions wil be 2 for each $$\alpha$$ . So they should be even
  • Question 6
    1 / -0
    Suppose $$S=\{1,2\}$$  and $$T=\{a,b\}$$  then $$T \times S$$
    Solution
    Given : $$S=\{ 1,2\} ,T=\{ a,b\} $$
    $$T\times S$$ is the set of ordered pair of elements of $$T$$ and $$S$$ respectively
    Then, $$T\times S=\{a,b\}\times \{1,2\}$$
    $$T\times S=\{ (a,1),(a,2),(b,1),(b,2)\} $$
  • Question 7
    1 / -0
    Given $$A=\{b,c,d\}$$ and  $$B=\{x,y\}$$ : find element of  $$A\times B$$ .
    Solution
    Given $$A=\{b,c,d\}$$ and  $$B=\{x,y\}$$, then
    $$A\times B=\{(b,x),(c,x),(d,x),(b,y),(c,y),(d,y)\}$$
    Hence, all the elements given in options are elements of $$A\times B$$.
  • Question 8
    1 / -0
    Let $$f(x+y)=f(x) f(y) \forall x, y \in R, f(5) =2,  f'(0)=3$$, then $$f'(5)$$ equals:
    Solution
    When $$f(x+y)=f(x)f(y)$$, then $$f(x)=a^{cx}$$
    Now, $$f(5)=a^{5c}$$
    $$\Rightarrow c=\dfrac{\log_a2}{5}$$
    Now,$$f'(x)=ca^{cx}\ln a$$
    $$\Rightarrow f'(0)=c\ln a$$
    $$\Rightarrow 3=c\ln a$$
    and $$f'(5)=\dfrac{3}{\ln a}.a^{\log_a2}.\log a$$
    $$f'(5)=3\times  2$$
    $$f'(5)=6$$
  • Question 9
    1 / -0
    If $$f(1)=1, f(n+1)=2f(n)+1,  n \geq 1$$, then $$f(n)$$ is:
    Solution
    Given that $$f(n+1)=2f(n)+1,n\geq 1$$. 
    Therefore, $$f(2)=2f(1)+1$$
    Since $$f(1)=1$$, we have
    $$f(2)=2f(1)+1=2(1)+1=3=2^2-1$$.
    Similarly $$f(3)=2f(2)+1=2(3)+1=7=2^3-1$$
    and so on....
    In general, $$ f(n)=2^n-1$$
  • Question 10
    1 / -0
    n(A)=m and n(B)=n ; then

    Solution
    C is not even logical while in the first 2 cases:

    If there are elements common in A and B L.H.S of the first statement will be greater than R.H.S.

    Clearly option B is also untrue as the combination of A and B cannot have lesser number of elements than A alone.

    The last option has to be true as cartesian product of 2 sets gives a matrix having n(A) and n(B) as columns and rows.whose product will give the number of elements in the matrix.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now