Self Studies

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$\displaystyle f\left ( x \right ) = x^{3} + 2x^{2} + 3x + 4$$, then the equation $$\displaystyle \frac{1}{x - f\left ( 1 \right )} + \frac{2}{x - f\left ( 2 \right )} + \frac{3}{x - f\left ( 3 \right )} = 0$$, has

  • Question 2
    1 / -0

    If ,$$(x-1, y+2)= (7, 5)$$ then values of $$x$$ and $$y$$ are

  • Question 3
    1 / -0

    Ordered pairs (a, 3) and (5, x) are equal ,the values of $$a$$ and $$x$$ are

  • Question 4
    1 / -0

    If $$(x, y) = (3, 5)$$ ; then values of $$x$$  and $$y $$ are 

  • Question 5
    1 / -0

    Given $$M = (0, 1, 2)$$ and $$N = (1, 2, 3)$$. Find $$(N - M) \times (N \cap M)$$

  • Question 6
    1 / -0

    If $$A = \{5, 7\}, B= \{7, 9\}$$ and $$C = \{7, 9, 11\},$$ find $$(A \times B) \cup (A \times C)$$

  • Question 7
    1 / -0

    If $$n(A) = 4$$ and $$n(B) = 5$$, then $$n(A \times  B) = $$

  • Question 8
    1 / -0

    If $$R$$ be a relation defined from $$\displaystyle A=\left \{ 1,2,3,4 \right \}$$ to $$\displaystyle B=\left \{ 1,3,5 \right \},i.e.\left ( a,b \right )\in R$$ iff $$a<b$$ then $$\displaystyle R o R^{-1}$$ is

  • Question 9
    1 / -0

    A relation $$R$$ is defined on the set $$Z$$ of integers as follows: R=$$(x,y)$$ $$\displaystyle \in {R}:x^{2}+y^{2}= 25$$. Express $$R$$ and $$\displaystyle R^{-1}$$ as the sets of ordered pairs and hence find their respective domains.

  • Question 10
    1 / -0

    The value of $$b$$ and $$c$$ for which the identify $$f (x + 1) - f (x) = 8x + 3$$ is satisfied, where $$f (x)\, =\, bx^{2}\, +\, cx\, +\, d$$, are -

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now