Self Studies

Relations and Functions Test - 26

Result Self Studies

Relations and Functions Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\displaystyle f\left ( x \right ) = x^{3} + 2x^{2} + 3x + 4$$, then the equation $$\displaystyle \frac{1}{x - f\left ( 1 \right )} + \frac{2}{x - f\left ( 2 \right )} + \frac{3}{x - f\left ( 3 \right )} = 0$$, has
    Solution
    $$f\left( x \right) =x^{ 3 }+2x^{ 2 }+3x+4$$
    Then
    $$f\left( 1 \right) =1^{ 3 }+2.1^{ 2 }+3.1+4=1+2+3+4=10\\ f\left( 2 \right) =2^{ 3 }+2.2^{ 2 }+3.2+4=8+8+6+4=26\\ f\left( 3 \right) =3^{ 3 }+2.3^{ 2 }+3.3+4=27+18+9+4=56$$

    $$\displaystyle \frac { 1 }{ x-f\left( 1 \right)  } +\frac { 2 }{ x-f\left( 2 \right)  } +\frac { 3 }{ x-f\left( 3 \right)  } =0$$

    $$\Rightarrow 1\left( x-f\left( 2 \right)  \right) \left( x-f\left( 3 \right)  \right) +2\left( x-f\left( 1 \right)  \right) \left( x-f\left( 3 \right)  \right) +3\left( x-f\left( 1 \right)  \right) \left( x-f\left( 2 \right)  \right) =0$$

    $$ \Rightarrow \left( x-26 \right) \left( x-56 \right) +2\left( x-10 \right) \left( x-56 \right) +3\left( x-10 \right) \left( x-26 \right) =0$$

    $$ \Rightarrow 6{ x }^{ 2 }-322x+3356=0$$

    Comparing with General form of quadratic equation

    Here, $$a=6, b=-322, c=3356$$

    $$\therefore D=b^2 -4ac=322^2-4 \times 6 \times 3356 =23140> 0$$

    Therefore, this quadratic equation have $$2$$ real roots
  • Question 2
    1 / -0
    If ,$$(x-1, y+2)= (7, 5)$$ then values of $$x$$ and $$y$$ are
    Solution
    as the given ordered pairs are equal,
    $$x-1=7$$  and  $$y+2=5$$
    $$\therefore x=8$$ and $$y=3$$
  • Question 3
    1 / -0
    Ordered pairs (a, 3) and (5, x) are equal ,the values of $$a$$ and $$x$$ are
    Solution
    If two ordered pairs are equal, then both x - coordinates are equal and both y-coordinates are equal.

    Since  $$ (a, 3)  =  (5,x)  $$ then ,$$ a = 5 , x = 6 $$
  • Question 4
    1 / -0
    If $$(x, y) = (3, 5)$$ ; then values of $$x$$  and $$y $$ are 
    Solution

  • Question 5
    1 / -0
    Given $$M = (0, 1, 2)$$ and $$N = (1, 2, 3)$$. Find $$(N - M) \times (N \cap M)$$
    Solution
    $$ N - M $$ means subtracting  the common elements of $$M$$ and $$N$$ from $$N$$.
    So, $$ N - M =\{3\}$$ 

    Intersection of two sets has the elements which are common in both the sets.
    So, $$ N \cap M =\{1,2\}$$
    Cartesian product of two sets is found by forming ordered pairs, where $$x$$-coordinate is from first set and $$y$$-coordinate is from second set.
    So, $$ (N - M) \times (N \cap M) =\{ (3,1), (3,2) \}$$.
  • Question 6
    1 / -0
    If $$A = \{5, 7\}, B= \{7, 9\}$$ and $$C = \{7, 9, 11\},$$ find $$(A \times B) \cup (A \times C)$$
    Solution
    Product of two sets is found by forming ordered pairs by multiplying every element of the first set with the second set.
    So, $$ A \times B =  $$ { $$ (5,7), (5,9), (7,7),(7,9) $$ }
    And  $$ A \times C =  $$ { $$ (5,7), (5,9), (5,11), (7,7),(7,9), (7,11) $$ }
    Union of two sets has all the elements of both the sets.
    So, $$ (A \times B) \cup ( A \times C) = $$ { $$ (5,7), (5,9), (5,11), (7,7),(7,9), (7,11) $$ }
  • Question 7
    1 / -0
    If $$n(A) = 4$$ and $$n(B) = 5$$, then $$n(A \times  B) = $$
    Solution
    Given, $$n\left( A \right) =4$$ and $$n\left( B \right) =5$$ 
    $$ \Rightarrow n\left( A\times B \right) =n\left( A \right) \cdot n\left( B \right) $$ 
    $$\Rightarrow  n(A\times B)=4\cdot 5=20$$ 
    So, answer is $$20$$.
  • Question 8
    1 / -0
    If $$R$$ be a relation defined from $$\displaystyle A=\left \{ 1,2,3,4 \right \}$$ to $$\displaystyle B=\left \{ 1,3,5 \right \},i.e.\left ( a,b \right )\in R$$ iff $$a<b$$ then $$\displaystyle R o R^{-1}$$ is
    Solution
    $$\displaystyle R;A\in B$$ under given condition $$a<b$$ is given by,
    $$\displaystyle R=\left \{ \left ( 1,3 \right ),\left ( 1,5 \right

    ),\left ( 2,3 \right ),\left ( 2,5 \right ),\left ( 3,5 \right ),\left (

    4,5 \right ) \right \}$$
    $$\displaystyle R^{-1}=\left \{ \left ( 3,1

    \right ),\left ( 5,1 \right ),\left ( 3,2 \right ) ,\left ( 5,2 \right

    ),\left ( 5,3 \right )\left ( 5,4 \right )\right \}$$
    $$\displaystyle

    R o R^{-1}:$$ For composing $$\displaystyle R o R^{-1}$$ we will pick up an element of $$\displaystyle R^{-1}$$ first and then of $$R$$
    $$\displaystyle

    \left ( 3,1 \right )\in R^{-1}\left ( 1,3 \right )\in

    R\rightarrow \left ( 3,3 \right )\in  R o R^{-1}$$
    $$\displaystyle

    \therefore R o R^{-1}=\left \{ \left ( 3,3 \right ),\left ( 3,5 \right

    ),\left ( 5,3 \right ),\left ( 5,5 \right ) \right \}$$ only.
  • Question 9
    1 / -0
    A relation $$R$$ is defined on the set $$Z$$ of integers as follows: R=$$(x,y)$$ $$\displaystyle \in {R}:x^{2}+y^{2}= 25$$. Express $$R$$ and $$\displaystyle R^{-1}$$ as the sets of ordered pairs and hence find their respective domains.
    Solution
    $$R=\left\{ \left( 0,5 \right) ,\left( 0,-5 \right) ,\left( 3,4 \right) ,\left( -3,4 \right) ,\left( 3,-4 \right) ,\left( -3,-4 \right) ,\\ \left( 4,3 \right) ,\left( -4,3 \right) ,\left( 4,-3 \right) ,\left( -4,3 \right) ,\left( 5,0 \right) ,\left( -5,0 \right)  \right\} \\ { R }^{- 1 }=\left\{ \left( 5,0 \right) ,\left( -5,0 \right) ,\left( 4,3 \right) ,\left( 4,-3 \right) ,\left( -4,3 \right) ,\left( -4,-3 \right) ,\\ \left( 3,4 \right) ,\left( 3,-4 \right) ,\left( -3,4 \right) ,\left( 3,-4 \right) ,\left( 0,5 \right) ,\left( 0,-5 \right)  \right\} $$
    Therefore domain of $$R\equiv \left\{ 0,3,-3,-4,4,-5,-5 \right\} =$$ domain of $${ R }^{ -1 }$$
  • Question 10
    1 / -0
    The value of $$b$$ and $$c$$ for which the identify $$f (x + 1) - f (x) = 8x + 3$$ is satisfied, where $$f (x)\, =\, bx^{2}\, +\, cx\, +\, d$$, are -
    Solution
    Given $$f (x + 1) - f (x) = 8x + 3$$ and $$f(x) = bx^2+cx+d$$

    Substitute $$x=0$$ we get  $$f (0 + 1) - f (0) = 3$$

    $$\Rightarrow (b + c + d) - d = 3\Rightarrow b+c=3 ...(i)$$

    Again substitute $$x =-1$$ 

    we get 

    $$ f (-1 + 1) - f (- 1) = - 8 + 3\Rightarrow f(0) - f(-1)= -5\Rightarrow d - (b - c + d) = -5\Rightarrow -b + c = -5 ......(ii)$$

    Solving  (i) and (ii) we get $$b = 4, c = - 1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now