Self Studies

Relations and Functions Test - 36

Result Self Studies

Relations and Functions Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x+1)=3x-9$$, then what will be the value of $$f\left( { x }^{ 2 }-1 \right) $$?
    Solution
    Let 

    $$x+1=t$$

    $$x=t-1$$

    $$f(x+1)=3x-9$$

    $$f(t)=3(t-1)-9$$

    $$f(t)=3t-12$$

    Putting $$t=x^2-1$$

    $$f(x^2-1)=3(x^2-1)-12$$

    $$=3x^2-15$$

    Hence, option $$B$$ is the correct answer.
  • Question 2
    1 / -0
    On differentiating an identity function, we get?
    Solution
    Derivative of an Identity function gives a Constant function


    $$\dfrac{d(cx)}{dx} = c$$ 
    Where $$c$$ is a constant.
  • Question 3
    1 / -0
    If $$f(x + 1) = 3x - 9$$, then what will be the value of $$f(x^{2} - 1)$$?
    Solution
    Replace  $$x\rightarrow x - 1\Rightarrow f(x) = 3x - 12$$

    $$\therefore f(x^{2} - 1) = 3(x^{2} - 1) - 12$$ 

                          $$= 3x^{2} - 15$$.


  • Question 4
    1 / -0
    If $$\left |x^2-2x-8  \right | + \left |x^2+x-2  \right | = 3 \left |x +2  \right |$$, then the set of all real values of x is
    Solution
    We have $$|x^2-2x-8|+|x^2+x-2|=3|x+2|$$
    Above is possible when

    $$x^2-2x-8\le0$$ and $$x^2+x-2\ge0$$
     or
     $$x^2-2x-8\ge0$$ and $$x^2+x-2\le0$$

    For Case 1 when $$x^2-2x-8<0$$ and $$x^2+x-2>0$$

    $$(x-4)(x+2)\le0$$ and $$(x+2)(x-1)\ge0$$

    $$x\in [-2,4]$$ and $$x\in R-(-2,1)$$

    $$\therefore x\in [1,4]\cup \{-2\}$$


    For Case 2 when $$x^2-2x-8\ge0$$ and $$x^2+x-2\le0$$

    $$(x-4)(x+2)\ge0$$ and $$(x+2)(x-1)\le0$$

    $$x\in R- (-2,4)$$ and $$x\in [-2,1]$$

    So, for the case 2, $$x\in \phi$$

    $$\therefore x\in [1,4]\cup \{-2\}$$

  • Question 5
    1 / -0
    If log $$x - 5$$ log $$3$$ = $$-2$$, then x equals
    Solution
    Given : $$\log x- 5 \log 3=-2$$
    Find : $$x=?$$
    solution :
    $$\log x- 5 \log m=-2$$
    $$5 \log 3 - \log x=2$$
    $$\log 3 - \log x=2$$
    Now use $$\log x- \log y= \log \dfrac{x}{y}$$
    $$\log_{10}\left(\dfrac{35}{x}\right)=2$$
    $$\dfrac{35}{x}=10^{2}$$
    $$\dfrac{243}{x}=100$$
    $$x=\dfrac{243}{100}$$
    .$$x=2.43$$
  • Question 6
    1 / -0
    If $$f(x) = \dfrac {x(x - 1)}{2}$$ then $$f(x + 2)$$ equals.
    Solution
    $$f(x)=\dfrac{x(x-1)}{2}$$

    $$f(x+2)=\dfrac{(x+2)(x+2-1)}{2}$$

    $$f(x+2)=\dfrac{(x+2)(x+1)}{2}$$          ---- ( 1 )
    Now,
    $$f(x)=\dfrac{x(x-1)}{2}$$

    $$f(x+1)=\dfrac{(x+1)(x+1-1)}{2}$$

    $$f(x+1)=\dfrac{(x+1)x}{2}$$

    $$\dfrac{f(x+1)}{x}=\dfrac{(x+1)}{2}$$                --- ( 2 )
    Substituting value of ( 2 ) in ( 1 ) we get,

    $$f(x+2)=\dfrac{(x+2)f(x+1)}{x}$$ 

  • Question 7
    1 / -0
    If $${C}_{r}$$ stands for $${ _{  }^{ n }{ C } }_{ r }$$ then $$\left( { C }_{ 0 }+{ C }_{ 1 } \right) +\left( { C }_{ 1 }+{ C }_{ 2 } \right) +....\left( { C }_{ n-1 }+{ C }_{ n } \right) \quad $$ is equal to
    Solution
    $$(1+x)^{n}=^{}C_0+^{}C_{1}x+^{}C_2x^2+C_{3}x^{3}...........+^{}C_{n}x^{n}$$

    Put x =1 

    Using the relation of sum of coefficent 
    $$(C_0+C_1+$$ $$C_2+C_3....C_n)=2^n$$
    According to the question ,

    $$(C_0+C_1)+$$ $$(C_1+C_2)+$$ $$(C_2+C_3)+$$ $$(C_{n-1}+C_n)\rightarrow$$ 

    on  simplifying
    $$(C_0+C_1+$$ $$C_2+C_3....C_n)+$$ $$(C_1+C_2+C_3+....$$ $$C_{n-1})\rightarrow$$

    Adding and subtracting $$C_0and C_n$$ to above equation

    $$(C_0+C_1+$$ $$C_2+C_3....C_n)+$$ $$(C_0+C_1+C_2+C_3+....$$ $$C_{n})-C_0-C_n\rightarrow$$

    $$=2^n+2^n-1-1=2^{n+1}-2$$
  • Question 8
    1 / -0
    Let $$A=\left\{ a,b,c \right\} $$ and $$B=\left\{ 1,2 \right\} $$. Consider a relation $$R$$ defined from set $$A$$ to set $$B$$. Then $$R$$ is equal to set
    Solution
    The relation defined from a set $$A$$ to set $$B$$ is defined as a subset of $$A\times B$$.

    $$R:A\rightarrow B=\{(x,y)|x\in A, y\in B , (x,y)\in A\times B\}$$

    Here, $$A\times B=\{(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)\}$$

    Relation from A to B will be a subset of this $$A\times B$$.
  • Question 9
    1 / -0
    If $$f(x)=\cos { \left( \log { x }  \right)  } $$ then $$f(x)f(y)-\cfrac { 1 }{ 2 } \left[ f\left( \cfrac { x }{ y }  \right) +f(xy) \right] $$ has value
    Solution
    $$f\left( x \right) = \cos \left( {\log x} \right)$$
    $$f\left( x \right)f\left( y \right) - \frac{1}{2}\left[ {f\left( {\frac{x}{y}} \right) + f\left( {xy} \right)} \right]$$
    $$= \cos \left( {\log x} \right)\cos \left( {\log y} \right) - \frac{1}{2}\left[ {\cos \left( {\log \frac{x}{y}} \right) + \cos \left( {\log xy} \right)} \right]$$
    $$ = \cos \left( {\log x} \right)\cos \left( {\log y} \right) - \frac{1}{2}\left[ {\cos \left( {\log x - \log y} \right) + \cos \left( {\log x + \log y} \right)} \right]$$
     $$\cos \left( {\log x} \right)\cos \left( {\log y} \right) - \frac{1}{2}\left[ {2\cos \left( {\log x} \right)\cos \left( {\log y} \right)} \right]$$
                            $$[ \because \cos A + \cos B = 2\cos \frac{{A + B}}{2}\cos \frac{{A - B}}{2}]$$
    $$\cos \left( {\log x} \right)\cos \left( {\log y} \right) - \cos \left( {\log x} \right)\cos \left( {\log y} \right)$$
    $$ = 0$$
  • Question 10
    1 / -0
    If $$f(x)=\cfrac { x }{ { x }^{ 2 }+1 } $$ is increasing function then the value of $$x$$ lies in
    Solution
    Given function is $$f\left( x \right) =\dfrac { x }{ { x }^{ 2 }+1 } $$,

    Given that this is increasing in nature,

    $$\Longrightarrow f^{ ' }\left( x \right) >0\\ \Longrightarrow \dfrac { 1-{ x }^{ 2 } }{ { \left( 1+{ x }^{ 2 } \right)  }^{ 2 } } >0\\ \Longrightarrow { x }^{ 2 }<1$$ 

    $$x$$ lies in the interval $$(-1,1)$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now