Self Studies

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    For $$a,\ b\ \epsilon \ R-\left\{ 0 \right\}$$, let $$f(x)=ax^{2}+bx+a$$ satisfies $$f\left(x+\dfrac{7}{4}\right)=f\left(\dfrac{7}{4}-x\right) \forall \ x\ \epsilon\ R$$.
    Also the equation $$f(x)=7x+a$$ has only one real distinct solution.
    The value of $$(a+b)$$ is equal to

  • Question 2
    1 / -0

    $$f(x)$$ is a cubic polynomial with it's leading coefficient 'a'. $$x=1$$ is a point of extremum of $$f(x)$$ and $$x=2$$ is a point of extremum of $$f(x)$$. Then?

  • Question 3
    1 / -0

    If x is real, then $$\dfrac{x^2+2x+c}{x^2+4x+3c}$$ can take all real values if?

  • Question 4
    1 / -0

    If $$\dfrac{{{x^2} + {y^2}}}{{x + y}} = 4$$, then all possible values of $$(x-y)$$ is given by 

  • Question 5
    1 / -0

    The area of the region $$R = \{(x, y) : |x| \le |y| \, \text{and} \, x^2 + y^2 \le 1 \}$$ is 

  • Question 6
    1 / -0

    Let $$R = \left \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 2)\right \}$$ be a relation on the set $$A = \left \{1, 2, 3, 4\right \}$$. The relation $$R$$ is

  • Question 7
    1 / -0

    If  $$f:R\rightarrow R,g:R\rightarrow R$$ are defined by $$f(x)=5x-3,g(x)={ x }^{ 2 }+3,$$ then $$(go{ f }^{ -1 })(3)=\\ $$

  • Question 8
    1 / -0

    $$f:c \to c$$ is defined as $$f(x) = \dfrac{{ax + b}}{{cx + d}},bd \ne 0$$ then $$f$$ is a constant function when,

  • Question 9
    1 / -0

    If $$f$$ is a real valued function such the $$\left| {f\left( x \right) - f\left( y \right)} \right| \le {\left| {x - y} \right|^3}$$ then $$f'\left( x \right)$$

  • Question 10
    1 / -0

    Let for $$a\ne a_1 \ne 0$$,   $$f(x)=ax^2+bx+c$$, $$\,\,\ g(x)=a_1x^2+b_1x+c_1$$ and $$p(x)=f(x)-g(x)$$. If $$p(x)=0$$ only for $$x=-1$$ and $$p(-2)=2$$, then the value of $$p(2)$$ is : 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now