Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 40

Result Self Studies

Relations and Functions Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For $$a,\ b\ \epsilon \ R-\left\{ 0 \right\}$$, let $$f(x)=ax^{2}+bx+a$$ satisfies $$f\left(x+\dfrac{7}{4}\right)=f\left(\dfrac{7}{4}-x\right) \forall \ x\ \epsilon\ R$$.
    Also the equation $$f(x)=7x+a$$ has only one real distinct solution.
    The value of $$(a+b)$$ is equal to
    Solution
    $$\because f\left(x+\dfrac{7}{4}\right)=f\left(\dfrac{7}{4}-x\right)$$
    $$\therefore f(x)$$ is about $$x=\dfrac{7}{4}$$
    $$\because f(x)=ax^{2}+bx+a$$
    $$f'(x)=2ax+b\Rightarrow x=\dfrac{-b}{2a}=\dfrac{7}{4}$$
    $$\Rightarrow \dfrac{b}{a}=-\dfrac{7}{2}$$
    $$\Rightarrow b=-\dfrac{7}{2}a$$
    Also




  • Question 2
    1 / -0
    $$f(x)$$ is a cubic polynomial with it's leading coefficient 'a'. $$x=1$$ is a point of extremum of $$f(x)$$ and $$x=2$$ is a point of extremum of $$f(x)$$. Then?
    Solution
    $$\begin{array}{l} f\left( x \right) =9{ x^{ 3 } }+b{ x^{ 2 } }+cx+d \\ f'\left( x \right) =3a{ x^{ 2 } }+2bx+c \\ x=1\, \, and\, \, x=2\, \, are\, \, roots\, \, of\, \, earation \\ \Rightarrow 3a+2b+c=0 \\ \Rightarrow 12a+4b+c=0 \\ \Rightarrow b=-9a/2,\, \, c=69 \\ f'\left( x \right) =3{ x^{ 2 } }-9x+6 \\ f''\left( x \right) =6x-9 \\ for\, \, x=1\, \, po{ { int } }\, \, of\, \, \max  ima\, \, f''\left( x \right) \, \, '-ve' \end{array}$$
    Option (c)
  • Question 3
    1 / -0
    If x is real, then $$\dfrac{x^2+2x+c}{x^2+4x+3c}$$ can take all real values if?
    Solution
    Let us assume that $$\dfrac{x^2+2x+c}{x^2+4x+3c}=y$$
    $$\Rightarrow yx^2+4xy+3yc=x^2+2x+c$$
    $$\Rightarrow x^2(y-1)+2x(2y-1)+3yc-c=0$$
    For x to be real, Discrimination of this equation should be $$\geq 0$$
    $$\therefore 4(2y-1)^2-4\times (y-1)\times (3yc-c)\geq 0$$
    $$4(4y^2-4y+1)-4(3cy^2-4cy+c)\geq 0$$
    Dividing both sides by $$4$$, we get
    $$(4-3c)y^2+4y(c-1)+1-c\geq 0$$
    For this equation to hold true, coefficient of $$y^2$$ should be greater than $$0$$ and D $$< 0$$
    $$\Rightarrow 4-3c > 0$$ i.e. $$c < \dfrac{4}{3}$$ ..$$(1)$$
    Also,
    $$16(c^2-2c+1)-4\times (1-c)\times (4-3c) < 0$$
    $$\Rightarrow 16c^2-32c+16-4(4-7a+3a^2) < 0$$
    $$\Rightarrow 16c^2-32c+16-12c^2+28c-16 < 0$$
    $$\Rightarrow 4c(c-1) < 0$$
    $$\therefore 0 < c < 1$$.. $$(2)$$
    From $$(1)$$ and $$(2)$$, we can say that $$0 < c < 1$$ is the required condition.
  • Question 4
    1 / -0
    If $$\dfrac{{{x^2} + {y^2}}}{{x + y}} = 4$$, then all possible values of $$(x-y)$$ is given by 
    Solution
    $$\dfrac{x^2+y^2}{x+y}=4$$
    $$x^2+y^2=4(x+y)$$
    $$x^2-4x+y^2-4y=0$$
    $$x^2-4x+4+y^2-4y+4-8=0$$
    $$(x-2)^2   (y-2)^2=8$$
    $$(x-2)^2=4$$ and $$(y-2)^2=4$$
    $$(x-2)=-2$$    and $$ (y-2)=-2$$
    $$\therefore x=0 \text{or} 4$$    and $$y=0 \text{or}4$$
    $$\therefore $$ if $$x=0$$ and $$y=4$$
    $$x-y=-4$$
    if $$x=4$$ and $$y=0$$
    $$x-y=4$$
    $$(x-y)\in [-4,4]$$

  • Question 5
    1 / -0
    The area of the region $$R = \{(x, y) : |x| \le |y| \, \text{and} \, x^2 + y^2 \le 1 \}$$ is 
    Solution

  • Question 6
    1 / -0
    Let $$R = \left \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 2)\right \}$$ be a relation on the set $$A = \left \{1, 2, 3, 4\right \}$$. The relation $$R$$ is
    Solution

  • Question 7
    1 / -0
    If  $$f:R\rightarrow R,g:R\rightarrow R$$ are defined by $$f(x)=5x-3,g(x)={ x }^{ 2 }+3,$$ then $$(go{ f }^{ -1 })(3)=\\ $$
  • Question 8
    1 / -0
    $$f:c \to c$$ is defined as $$f(x) = \dfrac{{ax + b}}{{cx + d}},bd \ne 0$$ then $$f$$ is a constant function when,
    Solution
    f($$x$$)=$$\frac{ax+b}{cx+d}$$ is a constant function,
     then lets say it equal to same constant m. 
    $$m(cx+d)=ax+b$$ 
    $$a=mc $$
    $$b=md $$
    $$\frac{a}{c}$$ =$$\frac{b}{d}=m$$
    $$\frac{a}{b}$$ =$$\frac{c}{d}$$
     $$ad=bc$$
    C is correct.
  • Question 9
    1 / -0
    If $$f$$ is a real valued function such the $$\left| {f\left( x \right) - f\left( y \right)} \right| \le {\left| {x - y} \right|^3}$$ then $$f'\left( x \right)$$
    Solution
    $$ \displaystyle\left | f(x)-f(y) \right | \leq  \left | x-y \right |^{3}$$
    $$ \displaystyle \Rightarrow \dfrac{\left | f(x)-f(y) \right |}{\left | x-y \right |} \leq \left | x-y \right |^{2}$$
    $$ \displaystyle \Rightarrow \lim_{x\rightarrow y} \left | \dfrac{f(x)-f(y)}{x-y} \right | \leq \lim_{x\rightarrow y} \left | x-y \right |^{2}$$
    $$ \displaystyle \Rightarrow \lim_{x\rightarrow y}  \left | \dfrac{f(x)-f(y)}{x-y} \right |\leq \lim_{x\rightarrow y} \left | x-y \right |^2 $$
    $$ \Rightarrow \left | {f}' (x) \right | \leq 0.$$
    which is not possible.
    $$ \therefore {f}'(x) $$ is not possible to find.

  • Question 10
    1 / -0
    Let for $$a\ne a_1 \ne 0$$,   $$f(x)=ax^2+bx+c$$, $$\,\,\ g(x)=a_1x^2+b_1x+c_1$$ and $$p(x)=f(x)-g(x)$$. If $$p(x)=0$$ only for $$x=-1$$ and $$p(-2)=2$$, then the value of $$p(2)$$ is : 

    Solution
    $$ p(x) = (a-a_{1})x^{2}+(b-b_{1})x+(c-c_{1})$$
    $$ p(-1)= 0$$
    $$ p(-2)=2$$
    $$ p(0) =2 $$ (one to symmetry around x = -1 )
    $$ p(2) = ?$$
    $$ p(0) = 2 \Rightarrow c =c_{1}+2$$
    $$ p(-1) = 0 \Rightarrow (a-a_{1})-(b-b_{1})+2 = 0$$ __ (1)
    $$ p(-2) = 2 \Rightarrow 4(a-a_{1})-2(b-b^{1})+2=2$$
    $$ eq^{n}(1)\times 2 $$ 
    $$\Rightarrow 2(a-a_{1})-2(b-b_{1})+4 = 0$$
    $$ 2(a-a_{1}) = 2+2 $$
    $$ \Rightarrow a-a_{1}  = 2$$
    $$ \Rightarrow b-b^{1} = 4 $$
    $$p(2)= 4(a-a_{1})+2(b-b_{1})+(c-c_{1})$$
    $$ = 4\times 2+2\times 4+2$$
    $$ = 8+8+2$$
    $$ p(2) = 18 $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now