Self Studies

Relations and Functions Test - 42

Result Self Studies

Relations and Functions Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A$$ and $$B$$ are independent event such that $$P(A \cap B')=\dfrac {3}{25}$$ and $$P(A' \cap B)=\dfrac {8}{25}$$, then $$P(A)=$$
    Solution
    $$A$$ & $$B$$ are independent
    $$P(A\cap B)=\dfrac {3}{25}$$ and $$P(A'\cap B)=\dfrac {8}{25}\quad P(A)=(?)$$
    $$\rightarrow \ P(A)+P(B)=1---(i)$$ ($$A$$& $$B$$ are independent )
    $$\rightarrow \ P(A\cap B')=P(A)-P(A\cap B)$$
    $$P(A)-P(A\cap B)=\dfrac {3}{25}----(ii)$$
    $$\rightarrow \ P(A' \cap B)=P(B)-P(A\cap B)$$
    $$P(B)-P(A\cap B)=\dfrac {8}{25}-----(iii)$$
    $$\rightarrow \ $$ solving equation $$(ii)$$ and $$(iii)$$
    $$\dfrac {\,\,\, P\left( A \right) -P\left( A\cap B \right) =\dfrac { 3 }{ 25 } \\\,\,\, P\left( B \right) -P\left( A\cap B \right) =\dfrac { 8 }{ 25 } \\ -\quad \,\,\,\,\,\,\,+\quad \quad\quad\quad- }{ P\left( A \right) -P\left( B \right) =\dfrac { 3 }{ 25 } -\dfrac { 8 }{ 25 } \\ P\left( A \right) -P\left( B \right) =\dfrac { 3-8 }{ 25 }  } $$
                               $$=\dfrac {-5}{25}$$
    $$\rightarrow \ P(A)-P(B)=\dfrac {-1}{5}$$
    $$P(A)-(1-P(A))=\dfrac {-1}{5}$$
    $$P(A)-I+P(A)=\dfrac {-1}{5}$$
    $$\therefore \ 2P(A)=\dfrac {-1}{5}+1$$
    $$\therefore \ 2P(A)=\dfrac {4}{5}$$
    $$\therefore \ P(A)=\dfrac {4}{5\times 2}$$
    $$\therefore \ P(A)=\dfrac {2}{5}$$

  • Question 2
    1 / -0
    Let $$S=\{x \in R : x\geq 0$$ and $$2|\sqrt{x}-3|+\sqrt{x}(\sqrt{x}-6)+6=0\}$$. Then S?
    Solution

  • Question 3
    1 / -0
    Let $$f ( x ) + f ( 2 x ) + f ( 2 - x ) + f ( 1 + x ) = x , \text { for all } x \in R$$ then $$f ( 0 )$$ equals:
    Solution
    $$f(x)+f(2x)+f(2-x)+f(1+x)=x$$

    $$x=1 \Rightarrow f(1)+f(2)+f(1)+f(2)=1$$

    $$\Rightarrow 2f(1)+2f(2)=1$$

    $$\Rightarrow f(1)+f(2)=1/2$$ _____ (1)

    $$x=0\Rightarrow f(0)+f(0)+f(2)+f(1)=0$$

    $$\Rightarrow 2f(0)+f(1)+f(2)=0$$

    $$\Rightarrow 2f(0)+\dfrac{1}{2}=0$$ (from (1))

    $$\Rightarrow f(0)=\dfrac {-1}{4}$$
  • Question 4
    1 / -0
    The domain of $$\dfrac{1}{\sqrt{x-x^{2}}}+\sqrt{3x-1-2x^{2}}$$ is 
    Solution

    $$+(x) = \dfrac {1}{\sqrt {x (1 - x)}} + \sqrt {3x - 1 - 2x^{2}}$$

    Domain of $$f(x)$$ : -
    $$x (1 - x) > 0$$ and $$3x - 1 - 2x^{2} \geq 0$$

    $$2x^{2} - 3x + 1 \leq 0$$

    $$2x (x - 1) - 1 (x - 1) \leq 0$$

    $$(2x - 1) (x - 1)\leq 0$$

    Thus taking the intersection of above $$2$$.

    $$x \leftarrow [\dfrac {1}{2}, 1)$$.

  • Question 5
    1 / -0
    If  $$x<-1$$ then $${ x }^{ 2 }$$ is.
    Solution

  • Question 6
    1 / -0
    The set of values of '$$b$$' for which the origin and the point $$(1,1)$$ lie on the same side of the straight line $${ a }^{ 2 } x + ab y + 1 = 0 \;\;\forall \;\; a\in R,\; b > 0$$ are:
    Solution

  • Question 7
    1 / -0
    The minimum value of the sum of real numbers $${ a }^{ -5 },{ a }^{ -4 },{ 3a }^{ -3 },{ 1 },{ a }^{ 8 }$$ and $${ a }^{ 10 }$$ with a > 0 is  ______.
    Solution

  • Question 8
    1 / -0
    Let $$f\left( x \right)$$ be the primitive of $$\dfrac { 3x+2 }{ \sqrt { x-9 }  } $$ with respect to 'x' . if  F(10) =60 .  them the sum of digit of the value of F (13) i  
    Solution

  • Question 9
    1 / -0
    If $$a<b<c<d\quad$$ and $$x\epsilon R$$ Then the least value of the functions,
    $$f\left( x \right) =\left| x-a \right| +\left| x-b \right| +\left| x-c \right| +\left| x-d \right|$$  
    Solution

  • Question 10
    1 / -0
    The domain of $$f(x)=\frac{1}{\sqrt{(x-1)(x-2)(x-3)}}$$ is 
    Solution

    $${\textbf{Step -1: Put x=0 and change the sign as negative multiply by negative is positive}}$$                                                      $${\textbf{and positive multiply by negative is negative  }}  $$

                  $$ x = 0 \Rightarrow  -  \times  -  \times  -  =  - $$

    $${\textbf{Step -2:Put x=1.5 and change the sign as positive multiply by negative is negative}}$$                                                     $${\textbf{and negative multiply by negative is positive }}$$

                   $$x = 1.5 \Rightarrow  +  \times  -  \times  -  =  + $$

    $${\textbf{Step -3:Put x=2.5 and change the sign as positive multiply by positive is positive}}$$                                                      $${\textbf{and positive multiply by negative is negative}}$$

                     $$x = 2.5 \Rightarrow  +  \times  +  \times  -  =  - $$

    $${\textbf{Step -4: Put x=4 and change the sign as positive multiply by positive is always positive }}$$

                      $$x = 4 \Rightarrow  +  \times  +  \times  +  =  + $$

                      $${\text{x is positive between 1 and 2 and between 3 and infinity so }} x \in (1,2) \cup (3,\infty )$$

    $$\textbf{Hence option B is correct}$$

     

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now