Self Studies

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    $$f(x)=(x-1)(x-2)(x-3)(x-4)$$. Then out of three roots of $$f'(x)=0$$

  • Question 2
    1 / -0

    If f (x+y).f(y) for all x,y, where f'(0)=3 and f(4)=2 then f'(4) is equal to

  • Question 3
    1 / -0

    If  $$f \left( \dfrac { x + y } { 2 } \right) = \dfrac { f ( x ) + f ( y ) } { 2 }$$  for all  $$x , y \in R$$  and  $$f ^ { \prime } ( o ) = - 1 , f ( o ) = 1$$  then  $$f(2)=$$

  • Question 4
    1 / -0

    If $$z$$, satisfies the condition that $$\dfrac { w-\overline{w}z }{ 1-z }$$ is purely real, then the set of values of $$z$$ is

  • Question 5
    1 / -0

    Let $$R$$ be a relation on $$N$$ defined by $$x+2y=8$$. The domain of $$R$$ is

  • Question 6
    1 / -0

    Directions For Questions

    $$f:R \rightarrow R$$ defined by, $$f(x) = x^3 + x^2 f'(1) + x.f^n(2) + f^m(3)$$ for all $$x \in R$$

    ...view full instructions

    The value of $$f(1)$$ is

  • Question 7
    1 / -0

    Let $$A\equiv \left\{1,2,3,4\right\},\ B\equiv \left\{a,b,c\right\}$$, then number of function from $$A\rightarrow B$$, which are not onto is

  • Question 8
    1 / -0

    If domain of $$y = f\left( x \right)$$ is $$ \left[ { - 3,\,\,2} \right]$$ then domain of $$y = f\left( {\left| {\left[ x \right]} \right|} \right)$$ is

  • Question 9
    1 / -0

    If $$x \epsilon$$ { $$1, 2, 3, ......,9$$} and $$f_n(x)=xxx.....x (n $$digit) then $$f_n ^2(3) + f_n(2)$$ is equal to 

  • Question 10
    1 / -0

    Let  $$R = \{ ( 3,3 ) , ( 6,6 ) , ( 9,9 ) , ( 6,12 ) , ( 3,9 ) , ( 3,12 ) , ( 3,6 ) \}$$  be a relation on the set  $$A=\{ 3,6,9,12\} .$$  Then the relation  $$R ^ { - 1 }$$  is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now