Self Studies

Relations and Functions Test - 44

Result Self Studies

Relations and Functions Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$f(x)=(x-1)(x-2)(x-3)(x-4)$$. Then out of three roots of $$f'(x)=0$$
    Solution

  • Question 2
    1 / -0
    If f (x+y).f(y) for all x,y, where f'(0)=3 and f(4)=2 then f'(4) is equal to
    Solution

  • Question 3
    1 / -0
    If  $$f \left( \dfrac { x + y } { 2 } \right) = \dfrac { f ( x ) + f ( y ) } { 2 }$$  for all  $$x , y \in R$$  and  $$f ^ { \prime } ( o ) = - 1 , f ( o ) = 1$$  then  $$f(2)=$$
    Solution
    let $$f(x)=ax+b$$
    $$f(0)=1\implies b=1$$
    $$f'(0)=-1 \implies a=-1$$
    $$\implies f(x)=1-x$$
    $$\implies f(2)=-1$$
  • Question 4
    1 / -0
    If $$z$$, satisfies the condition that $$\dfrac { w-\overline{w}z }{ 1-z }$$ is purely real, then the set of values of $$z$$ is
    Solution

  • Question 5
    1 / -0
    Let $$R$$ be a relation on $$N$$ defined by $$x+2y=8$$. The domain of $$R$$ is
    Solution
    R is Relation 
    $$ R = (x,y) $$ 
    $$ x+2y = 8 $$
    $$ R = \left \{ (6,1);(4,2);(2,3) \right \} $$
    $$ \therefore $$ Domain of set 
    $$ = \left \{ 6,4,2 \right \} $$

  • Question 6
    1 / -0

    Directions For Questions

    $$f:R \rightarrow R$$ defined by, $$f(x) = x^3 + x^2 f'(1) + x.f^n(2) + f^m(3)$$ for all $$x \in R$$

    ...view full instructions

    The value of $$f(1)$$ is
    Solution
    $$f(x)=x^{3}+x^{2} \cdot f^{\prime}(1)+x \cdot f^{\prime \prime}(2)+f^{\prime \prime \prime}(3)$$
    Differentiating both sides,  $$f^{\prime}(x)=3 x^{2}+2 x f^{\prime \prime}(1)+f^{\prime \prime}(2)$$ (i)
    Put $$x=1$$
    $$\Rightarrow(1-2 x) f^{\prime}(1)=3 x^{2}+f^{\prime \prime}(2)$$
    $$\Rightarrow f^{\prime \prime}(2)=-3 x^{2}+(1-2 x) \cdot f^{\prime}(1) $$
    $$\Rightarrow f^{\prime \prime}(2)=-3-f^{\prime}(1)$$

    Again, differentiate (i), 
    $$f^{\prime \prime}(x)=6 x+2 \cdot f^{\prime}(1)$$ (ii)

    Put $$x=2$$, 
    $$f^{\prime \prime}(2)=12+2 \cdot f^{\prime}(1)$$

    Substitute $$f^{\prime \prime}(2)=-3-f^{\prime}(1)$$
    $$\Rightarrow-3-f^{\prime}(1)=12+2 \cdot f^{\prime}(1)$$
    $$\Rightarrow 3 \cdot f^{\prime}(1)=-15$$
    $$\Rightarrow f^{\prime}(1)=-5$$

    And, $$\quad f^{\prime \prime}(2)=12+2 x-5$$
    $$=2$$

    Differentiate (ii) again,
    $$f^{\prime \prime}(x)=6$$
    $$\Rightarrow f^{\prime \prime \prime}(3)=6 \quad(x=3)$$
    $$f(x)=x^{3}+x^{2} \cdot(-5)+x \cdot 2+6$$
    Put $$x=1,$$
    $$f(1)=1-5+2+6$$
    $$=4$$
    $$\therefore$$ Option $$D$$ is correct.
  • Question 7
    1 / -0
    Let $$A\equiv \left\{1,2,3,4\right\},\ B\equiv \left\{a,b,c\right\}$$, then number of function from $$A\rightarrow B$$, which are not onto is
    Solution
    $$A \equiv\{1,2,3,4\} \\$$
    $$B \equiv\{a, b, c\}$$
    Total function $$(A \rightarrow B)$$

    $$\text { Total onto function }(A \rightarrow B)$$

    $$=4 c_{3} \times 3 ! \times 3$$
    $$=\frac{4 !}{3 ! 1 !} \times 3 ! \times 3$$
    $$=41 \times 3=72$$
    Hence, no. of $$f^{n}$$ which are not onto
    $$=81-72 \\$$
    $$=9$$

  • Question 8
    1 / -0
    If domain of $$y = f\left( x \right)$$ is $$ \left[ { - 3,\,\,2} \right]$$ then domain of $$y = f\left( {\left| {\left[ x \right]} \right|} \right)$$ is
    Solution

  • Question 9
    1 / -0
    If $$x \epsilon$$ { $$1, 2, 3, ......,9$$} and $$f_n(x)=xxx.....x (n $$digit) then $$f_n ^2(3) + f_n(2)$$ is equal to 
    Solution

  • Question 10
    1 / -0
    Let  $$R = \{ ( 3,3 ) , ( 6,6 ) , ( 9,9 ) , ( 6,12 ) , ( 3,9 ) , ( 3,12 ) , ( 3,6 ) \}$$  be a relation on the set  $$A=\{ 3,6,9,12\} .$$  Then the relation  $$R ^ { - 1 }$$  is
    Solution
    $$\begin{array}{l} We\, have \\ R=\left\{ { \left( { 3,3 } \right) ,\left( { 6,6 } \right) \left( { 9,9 } \right) \left( { 12,12 } \right) ,\, \left( { 6,12 } \right) ,\left( { 3,12 } \right) ,\, \left( { 3,6 } \right)  } \right\}  \\ and, \\ A=\left\{ { 3,6,9,12 } \right\}  \\ Then \\ The\, relation\, is\, reflexive\, and\, transitive\, only.\, because \\ \left\{ { \left( { 3,3 } \right) ,\left( { 6,6 } \right) \left( { 9,9 } \right) \left( { 12,12 } \right)  } \right\} \, \, it\, \, is\, { { Re } }flexive \\ and,\, \left( { 6,12 } \right) ,\left( { 3,12 } \right) ,\, \left( { 3,6 } \right) \left[ { it\, is\, transitive. } \right]  \\  \end{array}$$
    Hence, option $$A$$ is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now