Self Studies

Relations and Functions Test - 46

Result Self Studies

Relations and Functions Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Directions For Questions


    Column-IColumn-IIColumn-II
    $$f(x)=[x+[x]]]$$$$-1$$$$-3$$
    $$f(x)= sgn(x-[x])$$$$0$$$$-1$$
    $$f(x)=[x]+[-x]$$$$1$$$$0$$
    $$f(x)=\left[\dfrac{[x]}{1+x^2}\right]$$$$3$$$$1$$

    ...view full instructions

    Which of the following options is the only correct combination?
  • Question 2
    1 / -0
    If $$f(x)=(a-x^{n})^{1/n}$$, when $$a > 0$$ and $$n \in N$$, then $$fo\ f(x)$$ is equal to 
    Solution

  • Question 3
    1 / -0

    Directions For Questions


    Column-IColumn-IIColumn-II
    $$f(x)=[x+[x]]]$$$$-1$$$$-3$$
    $$f(x)= sgn(x-[x])$$$$0$$$$-1$$
    $$f(x)=[x]+[-x]$$$$1$$$$0$$
    $$f(x)=\left[\dfrac{[x]}{1+x^2}\right]$$$$3$$$$1$$

    ...view full instructions

    Which of the following options is the correct combination?
  • Question 4
    1 / -0

    Directions For Questions


    Column-IColumn-IIColumn-II
    $$f(x)=[x+[x]]]$$$$-1$$$$-3$$
    $$f(x)= sgn(x-[x])$$$$0$$$$-1$$
    $$f(x)=[x]+[-x]$$$$1$$$$0$$
    $$f(x)=\left[\dfrac{[x]}{1+x^2}\right]$$$$3$$$$1$$

    ...view full instructions

    Which of the following options is the correct combination?
  • Question 5
    1 / -0
    The set of values of 'a' for which the function $$f(x)=(4a-3)(x+ln5)+(a-7)sinx$$ does not posses critical points is _____________________.
    Solution
    $$f\left(x\right)=\left(4a-3\right)\left(x+\ln{5}\right)+\left(a-7\right)\sin{x}$$
    $${f}^{\prime}\left(x\right)=\left(4a-3\right)+\left(a-7\right)\cos{x}=0$$
    $$\Rightarrow\,\left(4a-3\right)+\left(a-7\right)\cos{x}=0$$
    $$\Rightarrow\,\left(4a-3\right)=-\left(a-7\right)\cos{x}$$
    $$\Rightarrow\,\cos{x}=\dfrac{3-4a}{a-7}$$ where $$a\neq\,7$$
    We know that range of $$\cos{x}$$ is $$\left[-1,1\right]$$
    $$\Rightarrow\,\left|\dfrac{3-4a}{a-7}\right|\le 1$$ is a solution
    $$\Rightarrow\,-1\le\dfrac{3-4a}{a-7}\le 1$$
    $$\Rightarrow\,7-a \le\,3-4a\le a-7$$
    $$\Rightarrow\,a-7 \ge\,4a-3\ge 7-a$$
    $$\Rightarrow\,a-7+3 \ge\,4a\ge 7-a+3$$
    $$\Rightarrow\,a-4 \ge\,4a\ge -a+10$$
    $$\Rightarrow\,a-4 \ge\,4a\ge -a+10$$
    $$\Rightarrow\,a\le-\dfrac{4}{3},\,a\ge 2$$
    $$\therefore\,a\in\left(-\infty,-\dfrac{4}{3}\right]\cup\left[2,\infty\right)$$
  • Question 6
    1 / -0
    Let $$A$$ be set of first ten natural numbers and $$R$$ be a relation on A, defined by $$(x,y)\in R\Rightarrow x+2y=10$$, then domain of $$R$$ is 
  • Question 7
    1 / -0
    Let  $$f ( x )$$  is a function such that  $$f ^ { \prime \prime } ( x )$$  exists and  $$f ^ { \prime } ( x )$$  is not a constant and  $$f ( 1 ) , f ( 2 ), f ( 3 ), f ( 4 ) $$  are in  $$A . P .$$  If domain of  $$f ( x )$$  is  $$[ 1,4 ] ,$$  then -
  • Question 8
    1 / -0
    The function f is not defined for x=0, but for all non zero real number x, f(x) + $$2f(\dfrac{1}{x})$$=3x. The equation 44,
    f(x)=f(-x) is satisfied by -
    Solution

  • Question 9
    1 / -0
    The relation $$R$$ defined on the set $$A=\left\{ 1,2,3,4,5 \right\} $$ by $$R=\left\{ \left( a,b \right) :\left| { a }^{ 2 }-{ b }^{ 2 } \right| <16 \right\} $$, is not given by
    Solution
    Given, the relation $$R$$ defined on the set $$A=\left\{ 1,2,3,4,5 \right\} $$ by $$R=\left\{ \left( a,b \right) :\left| { a }^{ 2 }-{ b }^{ 2 } \right| <16 \right\} $$.

    Then $$R$$ can be written as,
    $$R=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),$$             $$(4,3),(4,4),(4,5),(5,4),(5,5)\}$$.
  • Question 10
    1 / -0
    Time complexity to check if an edge exists between two vertices would be __________.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now