Self Studies

Relations and Functions Test - 50

Result Self Studies

Relations and Functions Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    lf $$f:R\rightarrow R$$ such that $$f(x+y)-Kxy = f(x)+2y^2$$ for all $$x,y \in R$$ and $$f(1)=2,f(2)=8$$ then $$f(20)-f(10)$$

    Solution
    $$f(x+y)-kxy=f(x)+2y^2$$
    Substitute $$x=0, y=1$$
    $$f(1)-k\times 0=f(0)+2$$
    $$f(1)=f(0)+2$$
    $$\therefore f(0)=0$$
    Now Substitute $$x=0, y=x$$
    $$f(x)-k\times 0=f(0)+2x^2$$
    $$f(x)=2x^2$$
    $$f(10)=200$$
    $$f(20)=800$$
    $$f(20)-f(10)=600$$
    Hence, option 'A' is correct.
  • Question 2
    1 / -0
    Vamsi is "X" years old. His sister''s age is $$\tiny \dpi{150} {\color{DarkBlue} 4\frac{1}{2}}$$ times that of Vamsi. Where as his uncle is 30 years older than him. If the total of their ages is 56 years, what is the age of Vamsi?
  • Question 3
    1 / -0
    If $$f(x)$$ is a polynomial function of degree $$n$$ satisfying eqation $$f(x) f(2x) = xf(3x)$$ then $$f(x)$$ is
    Solution
    comparing the degree on both sides, $$2n = n + 1$$
    $$\Rightarrow n = 1        \therefore f\left ( x \right ) = ax + b   where  a \neq  0$$
    As $$f\left ( x \right ) f\left ( 2x \right ) = x f\left ( 3x \right )  \Rightarrow    \left ( ax + b \right )\left ( 2ax + b \right ) = x\left ( 3ax + b \right )$$
    $$\Rightarrow  2a^{2} = 3a, 3ab = b, b^{2} = 0$$  
    $$\Rightarrow 2a = 3, b = 0$$      $$( \because a \neq 0)$$
    $$ \Rightarrow \displaystyle f\left ( x \right ) = \frac{3x}{2}$$
    which is an increasing function for all values of $$x$$. Hence, the function is bijective. 
  • Question 4
    1 / -0
    If $$f(x) = \cos(  \log x)$$ then $$f(x^2)f(y^2)-\dfrac{1}{2} \left [ f(x^2y^2)+f\left ( \dfrac{x^2}{y^2} \right) \right]=$$
    Solution
    Given, $$f(x)=\cos (\log x)$$
    Therefore, $$f(x^2)f(y^2) -  \dfrac{1}{2} [ f(x^2y^2)+f(x^2 / y^2)]$$
    $$=\cos  \log x^2  \cos  \log  y^2 -\dfrac{1}{2} [\cos  \log (x^2y^2)+\cos  \log (x^2 / y^2)]$$
    $$=\cos  \log x^2  \cos  \log  y^2 -\dfrac{1}{2} [\cos (\log  x^2 + \log  y^2)+\cos (\log  x^2 - \log  y^2)]$$
    Using, $$\cos C + \cos D = 2 \cos \left (\dfrac{C+D}{2}\right) \cos \left (\dfrac{C - D}{2}\right)$$
    $$=\cos  \log x^2  \cos  \log  y^2 - \dfrac{1}{2} [2  \cos  \log  ^2  \cos  \log  y^2]=0$$
  • Question 5
    1 / -0

    Directions For Questions

    Consider the function $$y=\frac{x^{2}+x+d}{x^{2}+2x+d}$$

    ...view full instructions

    What will be the range, when d $$=$$ 0
  • Question 6
    1 / -0
    Let a function $$f(x)$$ satisfies $$f^{2}(x)-f^{2}(y)=4(x-y)$$ and $$f(0)= 2\left ( f\left ( x \right )\geq 0 \right )$$whose domain is $$\left [ a ,\infty  \right )$$ and it is differentiable on $$\left (a ,\infty \right )$$
    The value of $$f(3)$$ is
    Solution
    $$f^{2}(x)-f^{2}(y)=4(x-y)$$ 

    and $$f(0)= 2\left ( f\left ( x \right )\geq 0 \right )$$

    $$f^{2}(x)-f^{2}(y)=4(x-y)$$ 

    Put y=0,

    $$f^{2}(x)-f^{2}(0)=4x$$ 

    $$f^{2}(x)=4x+4$$ 

    $$f^{2}(3)=16$$ 

    $$f(x) = \pm 4$$

    But given $$f(x) \ge 0$$, 

    Hence$$f(3)=4$$

  • Question 7
    1 / -0
    If $$A=\left \{ 1,2,3 \right \} $$ and $$B=\left \{ 4,5,6 \right \}$$ then which of the following sets are relation from $$A$$ to $$B$$
    (i) $$\displaystyle R_{1}=\left \{ (4,2) (2,6)(5,1)(2,4)\right \}$$
    (ii) $$\displaystyle R_{2}=\left \{ (1,4) (1,5)(3,6)(2,6) (3,4)\right \}$$
    (iii) $$\displaystyle R_{3}=\left \{ (1,5) (2,4)(3,6)\right \}$$
    (iv) $$\displaystyle R_{4}=\left \{ (1,4) (1,5)(1,6)\right \}$$
    Solution
    A relation from $$A$$ to $$B$$ will include elements from $$A\times B$$
    Elements of $$A\times B$$ are
    $$\{(1,4), (1,5) ,(1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}$$
    Now the relation $$R_{1}$$ consists of elements form both $$A\times B$$ and $$B\times A$$.
    Thus $$R_{1}$$ is not a relation from $$A$$ to $$B.$$
  • Question 8
    1 / -0
    The number of solution of the equation $$\displaystyle a^{f\left ( x \right )}+g\left ( x \right )=0,$$ where $$\displaystyle a >0, g\left ( x \right )\neq 0$$ and $$\displaystyle g\left ( x \right )$$ has minimum value $$\dfrac14$$, is
    Solution
    There are two terms in the question.
    The first term is $$a^{f(x)}$$ where 'a' is positive, so this term will always be positive no matter what the value of $$f(x)$$ is.
    Since its also mentioned that the minimum value of $$g(x)$$ is $$\dfrac{1}{4}$$, the sum of $$2$$ positive numbers cannot be zero.
    Hence, there is no solution.
  • Question 9
    1 / -0
    Let $$f$$ be a function satisfying $$\displaystyle f(x+y)=f(x)+f(y)$$ for $$x,y\:\epsilon\:R$$. If $$f(1)=k$$ then $$f(n)$$,$$n\:\in\:N$$, is equal to 
    Solution
    Let $$f(x)=\lambda(x)$$ where $$\lambda$$ is a constant.

    Hence

    $$f(x+y)$$

    $$=\lambda(x+y)$$

    $$=\lambda(x)+\lambda(y)$$

    $$=f(x)+f(y)$$

    Now it has been given that $$f(1)=k$$

    Therefore

    $$\lambda=k$$

    Hence 

    $$f(x)=k(x)$$

    Therefore $$f(n)$$

    $$=k(n)$$
  • Question 10
    1 / -0
    If the polynomial satisfies $$f\left( x \right) =\dfrac { 1 }{ 2 } \begin{vmatrix} f\left( x \right)  & f\left( \dfrac { 1 }{ x }  \right) -f\left( x \right)  \\ 1 & f\left( \dfrac { 1 }{ x }  \right)  \end{vmatrix}$$ and $$\displaystyle f \left ( 2 \right ) = 17$$, then the value of $$\displaystyle f\left ( 3 \right )$$ is 
    Solution
    Given that $$f\left( x \right) =\dfrac { 1 }{ 2 } \begin{vmatrix} f\left( x \right)  & f\left( \dfrac { 1 }{ x }  \right) -f\left( x \right)  \\ 1 & f\left( \dfrac { 1 }{ x }  \right)  \end{vmatrix}$$

    $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )=f\left ( x \right )+f\left ( \frac{1}{x} \right )$$

    $$\Rightarrow $$   $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )-f\left ( x \right )=f\left ( \frac{1}{x} \right )$$

    $$\Rightarrow $$   $$\displaystyle f\left ( x \right )=\frac{f\left (\dfrac{1}{x}\right )}{f\left (\dfrac{1}{x}\right )-1}$$        .. (i)

    Also, $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )=f\left ( x \right )+f\left ( \frac{1}{x} \right )$$

    $$\Rightarrow $$   $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )-f\left ( \frac{1}{x} \right )=f\left ( x \right )$$

    $$\Rightarrow $$   $$\displaystyle f\left ( \frac{1}{x} \right )=\frac{f\left ( x \right )}{f\left ( x \right )-1}$$          ..(ii)

    On multiplying Eqs. (i) and (ii), we get,

    $$\displaystyle f\left ( x \right )f\left ( \frac{1}{x} \right )=\frac{f\left (\dfrac{1}{x} \right )f\left ( x \right )}{\left \{ f\left (\dfrac{1}{x} \right )-1 \right \}\left \{ f\left ( x \right )-1 \right \}}$$

    $$\Rightarrow $$   $$\displaystyle \left ( f\left ( \frac{1}{x} \right )-1 \right )\left ( f\left ( x \right )-1 \right )=1$$        ..(iii)

    Since, $$f(x)$$ is polynomial function, so $$(f(x)-1)$$ and $$\displaystyle f\left ( \frac{1}{x} \right )-1$$ are reciprocals of each other. 

    Also, $$x$$ and $$\displaystyle \frac{1}{x}$$ are reciprocals of each other.

    Thus, Eq. (iii) can hold only when

    $$f\left ( x \right )-1=\pm x^{n}$$,          where $$n\in  N$$

    $$\therefore $$   $$f\left ( x \right )=\pm x^{n}+1$$          but $$f(2)=17$$

    $$\Rightarrow $$   $$\pm 2^{n}+1=17$$   $$\Rightarrow $$   $$2^{n}=16$$

    $$\Rightarrow $$   $$2^{n}=2^{4}$$          $$\left ( \because 2^{n}> 0 \right )$$

    $$\Rightarrow $$   $$n=4$$

    So, $$f\left ( x \right )=x^{4}+1$$

    Hence, $$f\left ( 3 \right )=3^{4}+1=82$$

    Ans: 82
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now