Self Studies

Relations and Functions Test - 55

Result Self Studies

Relations and Functions Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f\left( x \right)=\dfrac { \sin { x } \left( { 2 }^{ x }+{ 2 }^{ -x } \right) \sqrt { \tan ^{ -1 }{ \left( { x }^{ 2 }-x+1 \right)  }  }  }{ { \left( 7{ x }^{ 2 }+3x+1 \right)  }^{ 3 } } $$ then $$f'(0)$$ is equal to
    Solution

  • Question 2
    1 / -0
    Let $$X$$ be a family of sets and $$R$$ be a relation on $$X$$ defined by $$'A$$ is disjoint from $$B ^ { \prime }$$ . Then $$R$$ is _________.

    Solution

  • Question 3
    1 / -0
    A function $$ f : R \rightarrow R$$ satisfies x cos y (f (2x+2y)-f(2x-2y))=cos x sin y (f(2x+2y)+f(2x-2y)). If $$f'(0)=\dfrac{1}{2}$$, then 
    Solution

  • Question 4
    1 / -0
    If $$f(x) = \left\{ {\begin{array}{lllllllllllllll}{\left[ x \right]\quad \quad \quad ,if\quad  - 3 < x \le  - 1}\\{\left| x \right|\quad \quad \quad ,if\quad \; - 1 < x < 1}\\{\left| {\left[ { - x} \right]} \right|\quad \quad ,if\quad \;\;1 \le x \le 3}\end{array}} \right.$$, then $$\left\{x: f(x)\ge 0\right\}$$=
    Solution

  • Question 5
    1 / -0
    If $$f(x)=\left| \begin{matrix} sin{ x } & sin{ a } & sin{ b } \\ \cos { x }  & \cos { a }  & \cos { b }  \\ \tan { x }  & \tan { a }  & \tan { b }  \end{matrix} \right| $$, where $$0<a<b<\dfrac{\pi}{2}$$, then the equation $$f(x)=0$$ has in the interval $$(a,b)$$
    Solution

  • Question 6
    1 / -0
    The sum of infinite terms of the series $$1+2 \left(1-\dfrac{1}{n}\right)+3\left(1-\dfrac{1}{n}\right)^{2}+4\left(1-\dfrac{1}{n}\right)^{3}+........$$ is given by
    Solution

  • Question 7
    1 / -0
    The shortest distance between the line $$\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}$$ and $$\dfrac{x-2}{3}=\dfrac{y-2}{4}=\dfrac{z-5}{5}$$ is 
    Solution

  • Question 8
    1 / -0
    The complete set of values of $$x$$ for which the function $$f(x)=2\tan^{-1}x+\sin^{-1} \dfrac{2x}{1+x^{2}}$$ behaves like a constant function with positive output is equal to
    Solution

  • Question 9
    1 / -0
    If $$p$$ and $$q$$ are positive real numbers such that $$p^{2}+q^{2}=1$$, then the maximum value of $$(p+q)$$ is-
    Solution
    $$\textbf{Step 1: Calculating}$$
                    $$\text{Given that }p^2+q^2=1$$
                    $$\text{Applying }A.M\geq G.M$$
                    $$\Rightarrow \dfrac{p^2+q^2}2\geq \sqrt{p^2.q^2}$$
                    $$\Rightarrow \dfrac12\geq|p.q|$$
                    $$\Rightarrow \dfrac12\geq p.q\geq-\dfrac12$$
    $$\textbf{Step 2: Calculating p+q}$$
                    $$\Rightarrow \dfrac12\geq p.q\geq-\dfrac12$$
                    $$\Rightarrow 1\geq2p.q\geq-1$$
                    $$\Rightarrow 2\geq1+2p.q\geq0$$
                    $$\Rightarrow 2\geq p^2+q^2+2pq\geq 0$$
                    $$\Rightarrow 2\geq (p+q)^2\geq 0$$
                    $$\Rightarrow \max(p+q)=\sqrt2$$
    $$\textbf{Hence , the maximum value of p+q is}\mathbf{\sqrt2.}$$ $$\textbf{Option D is correct.}$$
  • Question 10
    1 / -0
    Let $$y$$ be an imlict function of $$x$$ defined by $$x^{2x}-2x^{x}\cot y-1=0$$.Then $$y'(1)$$ equals 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now