Self Studies

Relations and Functions Test - 56

Result Self Studies

Relations and Functions Test - 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\dfrac {(2x+3)(3x-4)}{(x-1)(4x+5)}=f(x)-\dfrac {5i}{9(x-1)}+\dfrac {31}{18(4x+5)}$$, then $$f(x)=$$
    Solution

  • Question 2
    1 / -0
    Let $$f(x)$$ be a real function not identically zero in $$Z$$, such that $$f(x+y^{2n+1})=f(x)+(f(y))^{2n+1},\ n\ \epsilon \ N,\ xy\ \epsilon \ R$$. If $$f'(0)\ge 0$$ then $$f'(6)$$ is equal to
    Solution

  • Question 3
    1 / -0
    If $$A=\begin{pmatrix} \dfrac { -1+i\sqrt { 3 }  }{ 2i }  & \dfrac { -1-i\sqrt { 3 }  }{ 2i }  \\ \dfrac { 1+i\sqrt { 3 }  }{ 2i }  & \dfrac { 1-i\sqrt { 3 }  }{ 2i }  \end{pmatrix}, i=\sqrt{-1}$$ and $$f(x)=x^{2}+2$$. Then $$f(A)$$ equals
    Solution

  • Question 4
    1 / -0
    Let $$f\left( x \right) =\begin{cases} { x }^{ 2 };\quad 0<x<2 \\ 2x-3;\quad 2\le x<3 \\ x+2;\quad x\ge 3 \end{cases}$$ Then:-
    Solution

  • Question 5
    1 / -0
    a real valued function $$f\left( x \right)$$ satisfied the functional equation $$f\left( x-y \right) =f\left( x \right) f\left( y \right) -f\left( a-x \right) f\left( a+y \right) $$ where a is given constant and $$f\left( 0 \right) =1,f\left( 2a-x \right) $$ is equal to:  
    Solution

  • Question 6
    1 / -0
    Let $$f(x)$$ be a non-negative continuous function such that the area bounded by the curve $$y=f(x)$$, $$x$$-axis and the ordinates $$x=\dfrac { \pi  }{ 4 }$$, $$x=\beta >\dfrac { \pi  }{ 4 }$$ is $$\left( \beta \sin { \beta  } +\dfrac { \pi  }{ 4 } \cos { \beta +\sqrt { 2 } \beta -\dfrac { \pi  }{ \sqrt { 2 }  }  }  \right)$$. Then $$f\left( \dfrac { \pi  }{ 2 }  \right)$$ is:
    Solution

  • Question 7
    1 / -0
    If $$g ( x ) = [ x ] + \sum _ { a = 1 } ^ { 2018 } \frac { x + a - [ x + a ] } { 2018 }$$ then $$g ( 100 ) = ( [ . ] G I F )$$
  • Question 8
    1 / -0
    If $$f(x)+f(x+4)=f(x+2)+f(x+6) \forall x\epsilon R$$, and $$f(5)=10$$, then $$\sum _{ r=1 }^{ 100 }{ f\left( 5+8r \right)  }$$ equal to 
    Solution

  • Question 9
    1 / -0
    The number of solutions of solutions of the equation: $${ x }^{ 3 }+\quad 2{ x }^{ 2 }\quad +\quad 5x\quad +\quad 2cosx\quad =\quad 0\quad in\quad \left[ 0,2\pi  \right] $$ is:-
  • Question 10
    1 / -0
    If $$f(x)=ax^{4}-bx^{2}+x+5$$ and $$f(-3)=2$$, then $$f(3)$$is.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now