Self Studies

Relations and Functions Test - 57

Result Self Studies

Relations and Functions Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)$$ is invertible and twice differentiable function satisfying
    $$\int _{ 0 }^{ f\left( x \right)  }{ f^{ -1 }\left( 1 \right) dt,\forall x\in R }$$ and $$f^{ \prime  }\left( 0 \right)=1$$ then $$f^{ \prime  }\left( 1 \right)$$ can be-
    Solution

  • Question 2
    1 / -0
    If the expansion in powers of x of the function $$\frac{1}{(1-ax)(1-bx)}$$ is $$a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+...., $$ then $$a_{n}$$ is
    Solution

  • Question 3
    1 / -0
    If $$f(x)=\dfrac{7^{1}+\ln x}{x^{\ln 7}}$$ then $$f(2015)=$$
    Solution

  • Question 4
    1 / -0
    Let $$f\left( x \right) =1+\sqrt { x } $$ and $$g\left( x \right) =\dfrac { 2x }{ { x }^{ 2 }+1 } $$, then
    Solution

  • Question 5
    1 / -0
    If $$n(A)=3,n(B)=4$$ and $$f:A\rightarrow B,$$ Then 
    Solution

  • Question 6
    1 / -0
    The number of real solutions of the equation $$f(x)=0$$, where $$f(x)=(x-1)^{3}+(x-2)^{3}+(x-3)^{3}$$, is
    Solution

  • Question 7
    1 / -0
    The set of values of $$x$$ for which $$f(x)=x^{12}-x^{9}+x^{4}-x+1>0$$ is 
    Solution

  • Question 8
    1 / -0
    If f(x + ay, x - ay) = axy then f(x,y) is equal to
    Solution

    $$f(x+a y, x-a y)=a x y$$

    Let $$x+a y=m-i$$ and $$x-a y=n-i 1$$

    Now, an adding (i) and(ii),

     

    \begin{array}{l}2 x=m+n \\ x=\dfrac{m+n}{2}\end{array}

     

    and on subtraction (ii) from(i)

     

    \begin{array}{l}2 a y=m-n \\ y=\dfrac{m-n}{2 a}\end{array}

     

    Now, $$\begin{aligned} f(m, n) &=a \times \dfrac{m+n}{2} \times \dfrac{m-n}{2 a} \\ &=\dfrac{m^{2}-n^{2}}{4} \end{aligned}$$

    Replace $$m$$ by $$x$$ and $$n$$ by $$y$$

    $$f(x, y)=\dfrac{x^{2}-y^{2}}{4}$$

  • Question 9
    1 / -0
    Let F(x) = $$= \int e^{sin^{-1}x}(1-\frac{x}{\sqrt{1-x^{2}}})dx$$ and $$ F(0) = 1, $$ If $$ F(1/2) = \frac{k\sqrt{3}e^{\pi /6}}{\pi }, $$ then the value of k is 
    Solution

  • Question 10
    1 / -0
    If $$f(x)={ \left( \dfrac { { x }^{ l } }{ { x }^{ m } }  \right)  }^{ l+m }{ \left( \dfrac { { x }^{ m } }{ { x }^{ nd} }  \right)  }^{ m+n }{ \left( \dfrac { { x }^{ n } }{ { x }^{ l } }  \right)  }^{ n+l }$$, then $$f'(x)$$ is equal to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now