Self Studies

Relations and Functions Test - 58

Result Self Studies

Relations and Functions Test - 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let f be injective map with domain {x , y, z} and range {1, 2, 4} such the exactly one of the following statement is correct and the remaining are false $$f(x)=1,f(y)\neq 1,f(z)\neq 2$$ then \\ $${ f }^{ -1 }(1)$$
    Solution

  • Question 2
    1 / -0
    Let a, b, c be real numbers with 0 < a < 1, 0 < b < 1, 0 < c < 1 and a + b + = 2 then$$\dfrac{a}{1 - a}$$,$$\dfrac{b}{1 - b}$$, $$\dfrac{c}{1 - c}$$
    Solution

  • Question 3
    1 / -0
    If $$y^2 = ax^2 +bx+c$$, then $$y^2 \dfrac{d^2y}{dx^2}$$ is
    Solution
    $$y^{2}=a x^{2}+b x+c \quad$$ is
    Differentiating this equ. (i),
    $$2 y \dfrac{d y}{d x}=2 a x+6$$
    Differentiating above equation again,
    $$2 y \dfrac{d^{2} y}{d x^{2}}+2\left(\dfrac{d y}{d x}\right)\left(\dfrac{d y}{d x}\right)=2 a$$
    $$\dfrac{d^{2} y}{d x^{2}}=\dfrac{2 a-2\left(\dfrac{d y}{d x}\right)^{2}}{2 y}=\dfrac{a-\left(\frac{d y}{d x}\right)^{2}}{y}$$
    $$y^{2} \dfrac{\alpha^{2} y}{d x^{2}}=y^{2}\left(\dfrac{a-\left(\dfrac{d y}{d x}\right)^{2}}{y}\right)$$
    $$y^{2} \dfrac{\alpha^{2} y}{d x^{2}}=y^{2}\left(\dfrac{a-\left(\dfrac{d y}{d x}\right)^{2}}{y}\right)$$
    $$=y\left(a-\left(\dfrac{d y}{d x}\right)^{2}\right) \quad\left\{\begin{array}{l}\because 2 y \dfrac{d y}{d x}=2 a x+b \\ \frac{d y}{d x}=\dfrac{2 a x+b}{2 y}\end{array}\right\}$$
    $$=y\left(a-\left(\dfrac{2 a x+b}{2 y}\right)^{2}\right)$$
    $$=\dfrac{y\left(4 a y^{2}-\left(4 a^{2} x^{2}+b^{2}+4 a b x\right)\right.}{4 y^{2}}$$
    $$=\dfrac{4 a y^{2}-4 a^{2} x^{2}-b^{2}-4 a b x}{4 y}$$
    $$=\dfrac{4 a\left(a x^{2}+6 x+c\right)-4 a^{2} x^{2}-6^{2}-4 a b x}{4 y}$$
    $$=\dfrac{4 a^{2} x^{2}+4 a b x+4 a c-4 a^{2} x^{2}-b^{2}-4 a b x}{4 y}$$
    $$=\dfrac{4 a c-b^{2}}{4 y}$$
    $$\therefore$$ It is function of $$y$$ only.
    option (C) is correct.
  • Question 4
    1 / -0
    Let f be a differential function satisfying the relation f(xy) = xf(y) +yf(x) -2xy (wherer x,y > 0) and f(1) = 3 then 
    Solution

  • Question 5
    1 / -0
    if $$\left( x \right) =\sqrt { { x+2 }\sqrt { 2x-4 }  } +\sqrt { { x-2 }\sqrt { 2x-4 }  } $$ then the value of $$10 { f }^{ 1 }\left( { 102 }^{ + } \right)$$
    Solution

  • Question 6
    1 / -0
    Let $$f(1)=1$$ and $$f(n)=2\sum_{r=1}^{n-1}{f(r)}$$. Then $$\sum_{n=1}^{m}{f(n)}$$. is equal to 
    Solution
    $$ \begin{array}{l} f(1)=1 \\ f(2)=2 \sum_{x=1}^{1} f(x)=2 f(1)=2 \\ f(3)=2 \sum_{x=1}^{2} f(x)=2(f(1)+f(2))=6 \\ \text { The sequence is } 1+2+6+18+\ldots \\ \begin{aligned} \sum_{n-1} f(n) &=1+2+6+18 t \\ &=1+2(1+3+9+\ldots) \\ &=1+2\left(\frac{3^{m-1}-1}{3-1}\right) \\ &=1+3^{m-1}-1 \\ &=3^{m-1} \end{aligned} \end{array} $$
    option C is correct.
  • Question 7
    1 / -0
    If $$f(x) = \dfrac{cos \, x}{(1 - sin x)}^{1/3}$$ then
  • Question 8
    1 / -0
    $$f(x) = e^x \sin x$$, then $$f^n(x)$$ is equal to
  • Question 9
    1 / -0
    If $$2f(x-1)-f\left(\dfrac{1-x}{x}\right)=x$$, then $$f(x)$$ is 
    Solution

  • Question 10
    1 / -0
    Let $$f(x)=(x+1)^{2}-1, x\ge -1$$. Then the set $$\left\{x: f(x)=f^{-1}(x)\right\}$$ is 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now