$$y^{2}=a x^{2}+b x+c \quad$$ is
Differentiating this equ. (i),
$$2 y \dfrac{d y}{d x}=2 a x+6$$
Differentiating above equation again,
$$2 y \dfrac{d^{2} y}{d x^{2}}+2\left(\dfrac{d y}{d x}\right)\left(\dfrac{d y}{d x}\right)=2 a$$
$$\dfrac{d^{2} y}{d x^{2}}=\dfrac{2 a-2\left(\dfrac{d y}{d x}\right)^{2}}{2 y}=\dfrac{a-\left(\frac{d y}{d x}\right)^{2}}{y}$$
$$y^{2} \dfrac{\alpha^{2} y}{d x^{2}}=y^{2}\left(\dfrac{a-\left(\dfrac{d y}{d x}\right)^{2}}{y}\right)$$
$$y^{2} \dfrac{\alpha^{2} y}{d x^{2}}=y^{2}\left(\dfrac{a-\left(\dfrac{d y}{d x}\right)^{2}}{y}\right)$$
$$=y\left(a-\left(\dfrac{d y}{d x}\right)^{2}\right) \quad\left\{\begin{array}{l}\because 2 y \dfrac{d y}{d x}=2 a x+b \\ \frac{d y}{d x}=\dfrac{2 a x+b}{2 y}\end{array}\right\}$$
$$=y\left(a-\left(\dfrac{2 a x+b}{2 y}\right)^{2}\right)$$
$$=\dfrac{y\left(4 a y^{2}-\left(4 a^{2} x^{2}+b^{2}+4 a b x\right)\right.}{4 y^{2}}$$
$$=\dfrac{4 a y^{2}-4 a^{2} x^{2}-b^{2}-4 a b x}{4 y}$$
$$=\dfrac{4 a\left(a x^{2}+6 x+c\right)-4 a^{2} x^{2}-6^{2}-4 a b x}{4 y}$$
$$=\dfrac{4 a^{2} x^{2}+4 a b x+4 a c-4 a^{2} x^{2}-b^{2}-4 a b x}{4 y}$$
$$=\dfrac{4 a c-b^{2}}{4 y}$$
$$\therefore$$ It is function of $$y$$ only.
option (C) is correct.