Self Studies

Relations and Functions Test - 59

Result Self Studies

Relations and Functions Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$k\ \epsilon\ R^+$$ and the middle term of $$(\dfrac{k}{2} + 2)^8$$ is $$1120$$, then value of k is
    Solution
    $$K\epsilon { R }^{ + }$$ 

    The general term, $${ \left( r+1 \right)  }^{ th }$$ term of the expansion
    $${ \left( \dfrac { K }{ 2 } +2 \right)  }^{ 8 }$$ is $${ T }_{ r+1 }={ 8 }_{ Cr }{ \left( \dfrac { K }{ 2 }  \right)  }^{ 8-r }{ 2 }^{ r }$$

    In the above expansion there are $$9$$ terms, hence the middle term will be the $$5th$$ term $$(r=4)$$

    $$\therefore$$   $${ T }_{ 5 }={ 8 }_{ { C }_{ 4 } }{ \left( \dfrac { K }{ 2 }  \right)  }^{ 8-4 }{ 2 }^{ 4 }$$

    $$=\dfrac { 8! }{ 4!4! } \dfrac { { K }^{ 4 } }{ { 2 }^{ 4 } } .{ 2 }^{ 4 }$$

    $$=\dfrac { 8\times 7\times 6\times 5 }{ 4\times 3\times 2 } { K }^{ 4 }$$

    $$=70{ K }^{ 4 }$$

    Given,

    $${ 70K }^{ 4 }=1120$$

    $$\Rightarrow { K }^{ 4 }=112/7$$

    $$\Rightarrow { K }^{ 4 }=16$$

    $$\Rightarrow { K }^{ 4 }={ 2 }^{ 4 }$$

    $$\therefore$$   $$K=2$$
  • Question 2
    1 / -0
    If $$f(x)=\sin^{2}x+x\sin 2x.\log x$$ then $$f(x)=0$$ has:
    Solution

  • Question 3
    1 / -0
    $$f(n) = \begin{cases} e^{-y_2}, n \neq 0 & f'(0) = ?\\ 0, n = 0\end{cases}$$
    Solution

  • Question 4
    1 / -0
    If $$f\left(x\right)=\dfrac{x}{x-1}$$, then $$\dfrac{ f\left(a\right)}{ f\left(a+1\right)}$$ is equal to
    Solution
    Given,

    $$f(x)=\frac{x}{x-1}$$

    $$f(a)=\frac{a}{a-1}$$
    $$f(a+1)=\frac{a+1}{a+1-1}$$
    $$=\frac{a+1}{a}$$

    Then,
    $$\frac{f(a)}{f(a+1)}=\frac{\frac{a}{a-1}}{\frac{a+1}{a}}$$
    $$=\frac{a}{a-1} \times \frac{a}{a+1}=\frac{a^{2}}{a^{2}}$$

    $$f\left(a^{2}\right)=\frac{a^{2}}{a^{2}-1}$$

    $$\text {Therefore option } C=f\left(a^{2}\right)$$

  • Question 5
    1 / -0
    If $$f(x) = -x^2 - 3x^2 - 2x + a:a \in R$$, then the real values of $$x$$ satisfying $$f(x^2 + 1) > f(2x^2 + 2x + 3)$$ will be:-
    Solution

  • Question 6
    1 / -0
    If $$f\left(y\right)=\log y$$, then $$f\left(y\right)+f\left(1/y\right)$$ is equal to 
    Solution
    $$\text { Griven, } f(y)=\log y \\$$
    $$\qquad f(y)+f\left(\frac{1}{y}\right)$$


    $$\Rightarrow \quad \log y+\log \left(\frac{1}{y}\right) \\$$
    $$\Rightarrow \quad \log y+\log \left((y)^{-1}\right) \\$$
    $$\Rightarrow \quad \log y-\log y \\$$
    $$\Rightarrow 0$$

    $$\therefore \text { option } c=0$$

  • Question 7
    1 / -0
    $$f(x)=\begin{cases} 5,\ \ \  \ \  \ \ x \le 1 \\ a+bx,\ \ 1 < x < 3 \\ b+ax , \ \ \ 3 \le x < 5 \end{cases}$$ then what is the value of $$a,b$$.
  • Question 8
    1 / -0
    If $$fxln\left(1+\dfrac{1}{x}\right)dx=p(x)ln\left(1+\dfrac{1}{x}\right)+\dfrac{1}{2}x-\dfrac{1}{2}ln(1+x)+c$$, being arbitary costant, then
    Solution

  • Question 9
    1 / -0
    If $$\emptyset (x)=\emptyset '(x)$$  and $$\emptyset (1)=2,$$ then $$\emptyset (3)=?$$
    Solution
    In the above question it is given that
    $$\phi(x)=\phi^{\prime}(x)$$
    This condition is only followed by
    $$\phi(x)=a e^{x}$$
    Given that $$\phi(1)=2$$
    $$\Rightarrow \phi(1)=a e^{\prime}$$
    $$\Rightarrow \quad 2=a e$$
    $$\Rightarrow \quad a=\dfrac{2}{e}$$
    Therefore to find $$\phi(3)$$ put $$x=3$$
    $$\Rightarrow \phi(3)=a e^{3}$$
    $$\Rightarrow \quad \phi(3)=\dfrac{2}{e} e^{3}$$
    $$\Rightarrow \phi(3)=2 e^{2}$$
    hence, (B) is the correct option.
  • Question 10
    1 / -0
    If the function $$f:[2,\infty ]\rightarrow [1,\infty ]$$ is defined by $$f(x)=3^{x}(x-2)$$ then $$f^{-1}(x)$$  is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now