Self Studies

Relations and Functions Test - 61

Result Self Studies

Relations and Functions Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $  A  $ is a finite set containing n distinct elements, then the number of relations on A is equal to
    Solution

  • Question 2
    1 / -0
    Let $$f\left( n \right) =1+\frac { 1 }{ 2 } +\frac { 1 }{ 3 } +....+\frac { 1 }{ n } .\quad Then\quad f\left( 1 \right) +f\left( 2 \right) +f\left( 3 \right) +......+f\left( n \right) \quad is\quad equal\quad to$$
    Solution

  • Question 3
    1 / -0
    If $$f(x + \frac 1 2) + f(x - \frac 1 2) = f(x)$$,$$\forall\  x\ \epsilon\  R$$, then $$f(x-3) + f(x + 3)$$ is equal to 
    Solution

  • Question 4
    1 / -0
    If $$f(x)=\cfrac { 1 }{ \sqrt { x+2\sqrt { 2x-4 }  }  } +\cfrac { 1 }{ \sqrt { x-2\sqrt { 2x-4 }  }  } $$ for x > 2, then $$f(11)=$$
  • Question 5
    1 / -0
    If n(A)=5 then number of relation on 'A' is:
  • Question 6
    1 / -0
    If $$p,q$$ be non-zero real numbers and $$f\left(x\right)\neq 0$$ in $$\left[0,2\right]$$ and $${\int}_{0}^{1}f\left(x\right).\left(x^{2}+px+q\right)dx={\int}_{0}^{2}f\left(x\right).\left(x^{2}+px+q\right)dx=0$$ then equation $$x^{2}+px+q=0$$ has
    Solution

  • Question 7
    1 / -0
    Let $$f(n)=2cosnx\forall n\epsilon N$$, then $$f(1)f(n+1)-f(n)$$ is equal to 
    Solution

  • Question 8
    1 / -0
    For each positive integer $$n$$, let $$f\left(n + 1 \right) = n \left(-1\right)^{ n+1 } 2f\left(n\right) and f\left(1\right) = f\left(2010\right)$$. Then $$ \sum _{ K=1 }^{ 2009 }{ f\left( K \right)  } $$ is equal to
    Solution

  • Question 9
    1 / -0
    A non-zero function $$f (x)$$ is symmetrical about the line $$y = x$$ then the value of $$\lambda$$ such that:
    $${ f }^{ 2 }(x)=({ f }^{ -1 }x))^{ 2 }-\lambda xf(x){ f }^{ -1 }(x)+3{ x }^{ 2 }f(x)\forall x\in R$$ is
    Solution

  • Question 10
    1 / -0
    Let $$f:(0, \infty) \rightarrow R $$ and $$\int^{2x}_0 (1+t)f(t) dt =-2x^3-\dfrac{x^2}{2} +2x+K$$, where K is constant , then $$\Sigma^8_{r=1} f(r)$$ is equal to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now