Self Studies

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    If $$f(x)=\quad cos(\log { \quad x } )$$, then
    $$f({ x }^{ 2 })f({ y }^{ 2 }) -\frac { 1 }{ 2 } \left[ f(\frac { { x }^{ 2 } }{ 2 } )+f(\frac { { x }^{ 2 } }{ { y }^{ 2 } } ) \right] $$ has the value :

  • Question 2
    1 / -0

    If $$f\left( x+\frac { 1 }{ 2 }  \right) +f\left( x-\frac { 1 }{ 2 }  \right) =f\left( x \right) ,\quad \forall x\in \quad R$$, then $$f\left( x-3 \right) +f\left( x+3 \right)$$ is equal to 

  • Question 3
    1 / -0

    $$f(x) = \frac{{1 - x}}{{1 + x}}$$ for $$x \ne  - 1$$ then $$f(x) + \left( {\frac{1}{x}} \right)$$ is $$(for\,\,x \ne 0)$$

  • Question 4
    1 / -0

    Let $$A$$ be set of first ten natural numbers and $$R$$ be a relation on $$A$$ defined by (x , y) $$\in$$ $$R$$ $$\Rightarrow$$ x + 2y = 10 , then domain of $$R$$ is

  • Question 5
    1 / -0

    If  $$f(x)=x^2-5x+6$$, find $$f(A)$$ if $$A=\begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$.

  • Question 6
    1 / -0

    If $$ f ( x ) = x ^ { 3 } + x ^ { 2 } f ^ { \prime } ( 1 ) + x f ^ { \prime \prime } ( 2 ) + f ^ { \prime \prime \prime } ( 3 ) . $$ Then $$ f ( 2 ) $$ is

  • Question 7
    1 / -0

    If f(x) =$$\dfrac{1 - x}{1 + x} , then f [f (cos 2\theta)] =$$

  • Question 8
    1 / -0

    If f (x) = $$\dfrac{x -|x|}{|x|}, then f (-1) = $$

  • Question 9
    1 / -0

    If $$f\left( x \right) ={ x }^{ n }$$, then the value of $$f(1)-\dfrac { f'\left( 1 \right)  }{ 1! } +\dfrac { f''\left( 1 \right)  }{ 2! } -\dfrac { f'''\left( 1 \right)  }{ 3! } +...+\dfrac { \left( -1 \right) ^{ n }{ f }^{ n }\left( 1 \right)  }{ n! } $$ is 

  • Question 10
    1 / -0

    Let $$F(x)$$ be the primitive of $$\cfrac{3x+2}{\sqrt{x-9}}$$ with respect $$'x'$$. If $$F(10)=60$$. Then the sum of digits of the value of $$F(13)$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now